How to Evade a NO-GO Theorem in Flavor Symmetries Yoshio Koide (Osaka University) International Workshop on Grand Unified Theories: Current Status and.

Slides:



Advertisements
Similar presentations
TeV scale see-saws from higher than d=5 effective operators Neutrino masses and Lepton flavor violation at the LHC Würzburg, Germany November 25, 2009.
Advertisements

Hep-ph/ , with M. Carena (FNAL), E. Pontón (Columbia) and C. Wagner (ANL) New Ideas in Randall-Sundrum Models José Santiago Theory Group (FNAL)
The minimal B-L model naturally realized at TeV scale Yuta Orikasa(SOKENDAI) Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
The classically conformal B-L extended standard model Yuta Orikasa Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
Higgs Boson Mass In Gauge-Mediated Supersymmetry Breaking Abdelhamid Albaid In collaboration with Prof. K. S. Babu Spring 2012 Physics Seminar Wichita.
Higgs Quadruplet for Type III Seesaw and Implications for → e and −e Conversion Ren Bo Coauther : Koji Tsumura, Xiao - Gang He arXiv:
Memorial Conference in Honor of Julius Wess. Topics in Gauge Mediation Nathan Seiberg IAS Based on: Meade, NS and Shih, arXiv: NS, Volansky and.
Fermion Masses and Unification Steve King University of Southampton.
Hadronic EDMs in SUSY GUTs
June 18, 2004Mitsuru Kakizaki1 Democratic (s)fermions and lepton flavor violation Mitsuru Kakizaki (ICRR, University of Tokyo) June 18, 2004 We propose.
Enriching the Standard Model With a family of CP even and odd Higgs fields IAS School Jan 13, 2012 Nanyang Technological University Singapore.
May 25, 2004Kakizaki, Mitsuru1 Flavor structure in supersymmetric models Kakizaki, Mitsuru (ICRR, University of Tokyo) May 25, 2004 We proposed a new alignment.
1 NEUTRINO SEESAW AND CP VIOLATION FROM DYNAMICAL ELECTROWEAK SYMMETRY BREAKING 1.Introduction 2.UV Complete Model(s) 3.Seesaw 4.CP Violation R.Shrock.
Aug. 16, 2003Mitsuru Kakizaki1 Democratic (s)fermions and lepton flavor violation Mitsuru Kakizaki ( Tohoku Univ. ) Aug. 16, 2003 Ref.: K. Hamaguchi, M.
Oct. 25, 2004Mitsuru Kakizaki1 Flavor structure in supersymmetric models Mitsuru Kakizaki (ICRR, University of Tokyo) Oct. 25, Ochanomizu University.
B. Dutta Texas A&M University Phys.Rev.Lett.100:181801,2008; arXiv: ; To appear Grand Unified Models, Proton Decay and Phase of Collaborator: Yukihiro.
Chiral freedom and the scale of weak interactions.
Richard Howl The Minimal Exceptional Supersymmetric Standard Model University of Southampton UK BSM 2007.
Higgsless Theories, Electroweak Constraints, and Heavy Fermions Carl Schmidt Michigan State University July 18, 2005 SUSY 2005 Based on hep-ph/ ,
Fermion Masses and Unification Steve King University of Southampton.
Fermion Masses and Unification Steve King University of Southampton.
Aug 29-31, 2005M. Jezabek1 Generation of Quark and Lepton Masses in the Standard Model International WE Heraeus Summer School on Flavour Physics and CP.
Fermion Masses G.G.Ross, Corfu, September 2005 The Standard Model.
Masses For Gauge Bosons. A few basics on Lagrangians Euler-Lagrange equation then give you the equations of motion:
Monday, Apr. 2, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #12, 13, 14 Monday, Apr. 2, 2007 Dr. Jae Yu 1.Local Gauge Invariance 2.U(1) Gauge.
What is mSUGRA? Physics in Progress, seminar talk, 11 th Feb 2010 Helmut Eberl.
Fermion Masses and Unification Steve King University of Southampton.
Minimal SO(10)×A4 SUSY GUT ABDELHAMID ALBAID In Collaboration with K. S. BABU Oklahoma State University.
Yugo Abe (Shinshu University) July 10, 2015 In collaboration with T. Inami (NTU), Y. Kawamura (Shinshu U), Y. Koyama (NCTS) YA, T. Inami,
A Composite Little Higgs ZACKARIA CHACKO UNIVERSITY OF MARYLAND, COLLEGE PARK Puneet Batra.
2. Two Higgs Doublets Model
Texture of Yukawa coupling matrices in general two-Higgs doublet model Yu-Feng Zhou J. Phys. G: Nucl. Part. Phys.30 (2004) Presented by Ardy.
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
Lepton flavour and neutrino mass aspects of the Ma-model Alexander Merle Max-Planck-Institute for Nuclear Physics Heidelberg, Germany Based on: Adulpravitchai,
Speaker: Zhi-Qiang Guo Advisor: Bo-Qiang Ma School of Physics, Peking University 17 th, September, 2008.
Family Symmetry Solution to the SUSY Flavour and CP Problems Plan of talk: I.Family Symmetry II.Solving SUSY Flavour and CP Problems Work with and Michal.
Flavor induced EDMs with tanbeta enhanced corrections Minoru Nagai (ICRR, Univ. of Tokyo) Aug. 4, 2007 Summer Institute 2007 In collaborated with: J.Hisano.
Maximal CP Violation Hypothesis and Phase Convention of the CKM Matrix January 13, 2004, at YITP Y. Koide (University of Shizuoka) Based on hep-ph/
Neutrino mass and DM direct detection Daijiro Suematsu (Kanazawa Univ.) Erice Sept., 2013 Based on the collaboration with S.Kashiwase PRD86 (2012)
H. Quarks – “the building blocks of the Universe” The number of quarks increased with discoveries of new particles and have reached 6 For unknown reasons.
Duality in Left-Right Symmetric Seesaw Mechanism Michele Frigerio Service de Physique Théorique, CEA/Saclay Rencontres de Physique des Particules March.
Two-dimensional SYM theory with fundamental mass and Chern-Simons terms * Uwe Trittmann Otterbein College OSAPS Spring Meeting at ONU, Ada April 25, 2009.
Takaaki Nomura(Saitama univ)
Monday, Apr. 7, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #20 Monday, Apr. 7, 2003 Dr. Jae Yu Super Symmetry Breaking MSSM Higgs and Their.
Quark-Lepton Complementarity in light of recent T2K & MINOS experiments November 18, 2011 Yonsei University Sin Kyu Kang ( 서울과학기술대학교 )
BEYOND MFV IN FAMILY SYMMETRY THEORIES OF FERMION MASSES Work done with Zygmunt Lalak and Graham Ross Based on existing ideas but, hopefully, contributing.
Family Gauge Bosons with an Inverted Mass Hierarchy Yoshio Koide (Osaka University) in collaboration with Toshifumi Yamashita (Maskawa Insititute, KSU)
Introduction to Flavor Physics in and beyond the Standard Model Enrico Lunghi References: The BaBar physics book,
Lecture 7. Tuesday… Superfield content of the MSSM Gauge group is that of SM: StrongWeakhypercharge Vector superfields of the MSSM.
Physics 222 UCSD/225b UCSB Lecture 12 Chapter 15: The Standard Model of EWK Interactions A large part of today’s lecture is review of what we have already.
Probing flavor structure in unified theory with scalar spectroscopy June 21, 2007, Supersymmetry in Hall, Hokkaido University Kentaro.
Systematic model building... based on QLC assumptions NuFact 07 Okayama University, Japan August 8, 2007 Walter Winter Universität Würzburg.
Hunting for Hierarchies in PSL 2 (7) MICHAEL JAY PEREZ PHENOMENOLOGY 2015 MAY 5, 2015 ARXIV : /
ArXiv: (hep-th) Toshiaki Fujimori (Tokyo Institute of Technology) Minoru Eto, Sven Bjarke Gudnason, Kenichi Konishi, Muneto Nitta, Keisuke Ohashi.
1-2 Mass Degeneration in the Leptonic Sector Hiroyuki ISHIDA (Tohoku University) Collaboration with : Takeshi ARAKI (MISC) Ref ; T. Araki and H.I. arXiv.
and what we unsuccessfully tried to explain (so far)
Charged Higgs boson decay in supersymmetric TeV scale seesaw model
Metastable supersymmetry breaking vacua from conformal dynamics
A New Family Symmetry: Discrete Quaternion Group
Lepton Flavour Violation
Takaaki Nomura(Saitama univ)
Classically conformal B-L extended Standard Model
Hadronic EDMs in SUSY GUTs
The Flavour Problem and Family Symmetry
The MESSM The Minimal Exceptional Supersymmetric Standard Model
Quark and lepton masses
Lecture 12 Chapter 15: The Standard Model of EWK Interactions
Yoshio Koide University of Shizuoka
Presentation transcript:

How to Evade a NO-GO Theorem in Flavor Symmetries Yoshio Koide (Osaka University) International Workshop on Grand Unified Theories: Current Status and Future Prospects December 17, 2007, at Ritsumeikan University, Kusatsu, Shiga, Japan

1 Introduction 2 Masses and mixings in the standard model 3 No-go theorem in flavor symmetries 4 How to evade the no-go theorem -- Three allowed ways to the mass matrix models 5 Summary How to

1 Introduction When we see history of physics, we will find that "symmetries" always play a key role in the new physics. In investigating the origin of flavors, too, we may expect that an approach based on symmetries will be a powerful instrument for the investigation. Especially, how to treat the flavor symmetry is a big concern in grand unification model-building.

However, when we want to introduce a symmetry (discrete one, U(1), and any others) into our mass matrix model, we always encounter an obstacle, a No-Go theorem in flavor symmetries: We cannot bring any flavor symmetry into a mass matrix model within the framework of the standard model unless the model breaks the SU(2) L symmetry. (YK, Phys.Rev. D71 (2005) ) Flavor Symmetry

However, we should not consider this theorem to be negative. We must take this theorem seriously, but we should utilize this theorem positively to investigate the origin of the flavor mass spectra. In the present talk, I would like to talk about how to evade this No-Go theorem in order to build a realistic mass matrix model.

2 Masses and mixings in the standard model In the standard model, the fermion masses are generated from the VEV of the Higgs scalar: (We will denote a case in the quark sectors as an example.) (2.1) (2.2) (2.3)

The requirement of a flavor symmetry means as follows: Under the transformation of the flavor basis (2.4) the Hamiltonian is invariant. Therefore, the requirement imposes on the Yukawa coupling constants Y u and Y d as the following constraints: (2.5)

On the other hand, the CKM mixing matrix V is given by (2.6) where (2.7) Now we attention to, and we obtain (2.8) (2.9)

3 No-Go theorem in flavor symmetries [Theorem] When we introduce a flavor symmetry into a model within the framework of the standard model, the flavor mixing matrix (CKM matrix and/or neutrino mixing matrix) cannot describe a mixing among 3 families, and only a mixing between 2 families is allowed. (YK, Phys.Rev. D71 (2005) ) Flavor Symmetry

Such a strong constraint comes from the relations (2.8): Flavor symmetry requirement and (2.9) : Diagonalization relation When we define the operator (3.1) we can obtain the relation from (2.8) and (2.9). (3.2) Therefore, the operator T f must be (3.3) so that T L is expressed as (3.4) (3.5)

Eq.(3.5) leads to (3.6) (3.7) Only when, we can obtain We do not consider the case with and which corresponds to For a non-trivial flavor transformation T L, we must choose, at least, one of differently from others. For example, for the case with, we can obtain only a two-family mixing (3.8)

We summarize the premises to derive the theorem: (i) The SU(2) L symmetry is unbroken. (ii) There is only one Higgs scalar in each sector. (iii) 3 eigenvalues of Y f in each sector are non- zero and no-degenerate. If one of them in a model is not satisfied, the model can evade the theorem.

Example which is ruled out by the theorem (i) We consider a flavor symmetry at GUT scale. (Of course the SU(2) L symmetry is unbroken at the scale.) (ii) There is only one Higgs scalar in each sector, e.g. H u and H d. (iii) 3 eigenvalues of Y f in each sector are completely different from each other and not zero at the GUT scale. Then, such the model is ruled out by the theorem.

4 How to evade the no-go theorem -- Three allowed ways to the mass matrix models 4.1 Multi-Higgs model 4.2 Model with an explicitly broken symmetry In other words, there is no flavor symmetry from the beginning 4.3 Model in which Y’s are fields

4.1 Model with multi-Higgs scalars Multi-Higgs models can evade the No-Go theorem, where the Higgs scalars have different transformation properties for the flavor symmetry. (4.1.1) However, generally, such a multi-Higgs model induces the so-called FCNC problem.

We must make those Higgs scalars heavy except for one of the linear combinations of those scalars: (4.1.2) However, at present, models which give a reasonable mechanism are few. The mechanism must be proposed in the framework of the exact flavor symmetry. However, in most models, the suppression of unwelcome components are only assumptions by hand.

4.2 Model with an explicitly broken symmetry We consider a model in which the symmetry is broken explicitly from the beginning. Example: N.Haba & YK, hep-ph/ , PLB (2007) We assume a U(3) flavor symmetry. The symmetry U(3) is broken by the parameter Y f explicitly: (4.2.1)

(For convenience, hereafter, we drop the index "e".) Also, we consider a U(3) nonet field and we denote the superpotential for as (4.2.2) We assume that the symmetry is also broken by a tadpole term with the same symmetry breaking parameter Y as follows: (4.2.3)

Then, we obtain (4.2.4) (4.2.5) (4.2.6) (4.2.7) Now, we put an ansatz that our vacuum is given by a specific solution of Eq.(4.2.4): (4.2.8) and (4.2.9)

Eq.(4.2.8) leads to a bilinear mass formula (4.2.10) For non-zero and non-degenerate eigenvalues v i, Eq.(4.2.9) leads to c 1 =0 and c 0 =0. For example, when we assume (4.2.11) where, we obtain (4.2.12) from c 0 =0 because (4.2.13)

Eq.(4.2.12) leads to (4.2.14) in the diagonal basis of. Therefore, from Eqs.(4.2.10) and (4.2.14), we obtain the charged lepton mass formula (4.2.15) which can give an excellent prediction from the observed values of. (The observed value is )

4.3 Model in which Y’s are fields We consider that Y's are fields in the Yukawa interactions (4.3.1) Since the fields Y`s are transformed as (4.3.2) under the transformation (4.3.3) the constraints (2.8) for disappear, so that we can again evade the No-Go theorem.

For example, recently, Haba has suggested that the effective Yukawa interaction originates in a higher mass-dimensional term in Kähler potential K (4.3.4) (4.3.5) (N.Haba, private communication) A similar idea in the neutrino masses has been proposed by Arkani-Hamed, Hall, Murayama, Smith and Weiner [PRD64 (2001) ]

When we adopt a O'Raifeartaigh-type SUSY breaking mechanism [PL B429 (1998) 263] (4.3.6) where (3x3 matrix) is a flavor breaking parameter. W e can again obtain a bilinear form for the effective Yukawa coupling constant as follows: (4.3.7) (4.3.8) where the VEV spectrum of is determined from the equation (4.3.9) More details will appear in hep-ph soon.

5 Summery The no-go theorem in flavor symmetries tells us that we cannot bring any flavor symmetry, at least, into a mass matrix model based on the standard model. We have demonstrated 3 ways to evade the no-go theorem in the flavor symmetries: (A) Model with multi-Higgs scalars (B) Model with an explicit broken symmetry (C) Model in which Y's are fields

Models based on the scenario A have been proposed by many authors. However, current most models have not given a plausible mechanism which makes Higgs scalars heavy except for one. In the scenario B, there is no flavor symmetry from the beginning. The "flavor symmetry" is a faked one for convenience. However, if we once suppose a flavor symmetry, rather, we would like to consider that the symmetry is exact, and then it is broken spontaneously. Therefore, we are still unsatisfactory to the scenario B.

Models based on the scenario C are interesting. However, in order to give an effective Yukawa interaction, we need a term with higher mass dimension in W or in K However, we want a model without such higher mass dimensional terms as possible.

I believe that this no-go theorem will shed a light on the understanding of the flavor mass spectra. Thank you In conclusion, I have proposed 3 ways to evade the no-go theorem. Those scenarios can evade the no-go theorem practically, but those still do not suit my feeling. We must seek for a more natural scenario which is free from the no-go theorem.

Proof of the theorem We define Hermitian matrices (A.1) (A.2) We obtain (A.3) where (A.4) If are non-zero and non-degenerate, must be (A.5) so that (A.6) (A.7)

Eq.(A.7) leads to (A.8) (A.9) Only when, we can obtain We do not consider the case with and which corresponds to For a non-trivial flavor transformation T L, we must choose, at least, one of differently from others. For example, for the case with, we can obtain only a two-family mixing (A.10)