Genetics & The Work of Mendel

Slides:



Advertisements
Similar presentations
AP Biology Genetics & The Work of Mendel. AP Biology Gregor Mendel  Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor.
Advertisements

AP Biology F 2 generation 3:1 75% purple-flower peas 25% white-flower peas Looking closer at Mendel’s work P 100% F 1 generation (hybrids) 100% purple-flower.
Genetics & The Work of Mendel (Ch. 14)
SOLVING GENETICS PROBLEMS Biology Unit 6 Powerpoint #2 / Chapter 11 Mr. Velekei.
Probability & Genetics
AP Biology Genetics & The Work of Mendel.
Genetics & The Work of Mendel Gregor Mendel  Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented.
Regents Biology Genetics & The Work of Mendel.
Genetics Why do we look the way we do?
Genetics & The Work of Mendel
AP Biology Chapter 14. Mendel & Genetics.
AP Biology What is on the Pre Quiz  Phenotype vs. Genotype  Dominant vs. Recessive  Homozygous vs. Heterozygous  Basic Punnet Square problems.
1 Mendelian Genetics 2 Gregor Mendel ( ) Responsible for the Laws governing Inheritance of Traits.
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel Genetic Terminology Trait - any characteristic that can be passed from parent to offspring Heredity - passing of traits.
AP Biology Lecture #25 Mendel. Mendel & The Gene Idea.
Mendel, Genes, and Inheritance Chapter 12. Gregor Mendel Austrian Monk with a strong background in plant breeding and mathematics Using pea plants, found.
Pea plants have several advantages for genetics.
AP Biology March 15, 2012  BellRinger  List 5 examples of instances where you have observed evidence of inherited traits between parents and offspring.
MCC BP Based on work by K. Foglia Chapter 14. Mendel & Genetics.
The Chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes form parent to offspring Heredity Part.
Chapter 14~Mendel & The Gene Idea Gregor Mendel Modern genetics began in the mid- 1800s in an abbey garden, where a monk named Gregor Mendel documented.
AP Biology Genetics & The Work of Mendel. AP Biology Gregor Mendel  Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor.
AP Biology Mendelian Genetics Genetics Unit. AP Biology History of Genetics : Gregor Mendel (Austrian monk) presented results of 10 years of experimentation.
Chapter 14: Mendel & The Gene Idea
Genetics & The Work of Mendel
Bi 2c Students know how random chromosome segregation explains the probability that a particular allele will be in a gamete. Bi2. g. Students know how.
D.N.A.
Mendel & The Gene Idea Why Mendel Chose Peas? Contrasting traits Contain both sexes (self poliniation) Genetically simple.
GENETICS GENETICS & THE WORK OF MENDEL Gregor Mendel  Modern genetics began in the mid- 1800s in an abbey garden, where a monk named Gregor Mendel documented.
AP Biology Tuesday, March 11 th QUESTION TO PONDER: What is meant by the term map unit? Looking at the chromosome, how many map units are there on this.
Chapter 12.1 Mendelian Genetics Gregor Mendel  Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented.
AP Biology Genetics & The Work of Mendel.
Genetics & The Work of Mendel Gregor Mendel  The Father of Genetics  Modern genetics began in the mid- 1800s in an abbey garden, where a monk named.
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & Gregor Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics Notes #2 Mendel & Probability
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Chapter 14. Mendel & Genetics
Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental.
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Genetics & The Work of Mendel
Presentation transcript:

Genetics & The Work of Mendel

Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method used quantitative analysis collected data & counted them excellent example of the scientific method He studied at the University of Vienna from 1851 to 1853 where he was influenced by a physicist who encouraged experimentation and the application of mathematics to science and a botanist who aroused Mendel’s interest in the causes of variation in plants. After the university, Mendel taught at the Brunn Modern School and lived in the local monastery. The monks at this monastery had a long tradition of interest in the breeding of plants, including peas. Around 1857, Mendel began breeding garden peas to study inheritance.

Mendel’s work Bred pea plants P F1 F2 Pollen transferred from white flower to stigma of purple flower Bred pea plants cross-pollinate true breeding parents (P) P = parental raised seed & then observed traits (F1) F = filial allowed offspring to self-pollinate & observed next generation (F2) P anthers removed all purple flowers result F1 P = parents F = filial generation self-pollinate F2

Mendel collected data for 7 pea traits

Looking closer at Mendel’s work true-breeding purple-flower peas true-breeding white-flower peas X P 100% F1 generation (hybrids) purple-flower peas In a typical breeding experiment, Mendel would cross-pollinate (hybridize) two contrasting, true-breeding pea varieties. The true-breeding parents are the P generation and their hybrid offspring are the F1 generation. Mendel would then allow the F1 hybrids to self-pollinate to produce an F2 generation. self-pollinate F2 generation 3:1 75% purple-flower peas 25% white-flower peas

What did Mendel’s findings mean? Traits come in alternative versions purple vs. white flower color alleles different alleles vary in the sequence of nucleotides at the specific locus of a gene some difference in sequence of A, T, C, G purple-flower allele & white-flower allele are two DNA variations at flower-color locus different versions of gene at same location on homologous chromosomes

Traits are inherited as discrete units For each characteristic, an organism inherits 2 alleles, 1 from each parent diploid organism inherits 2 sets of chromosomes, 1 from each parent homologous chromosomes like having 2 editions of encyclopedia Encyclopedia Britannica Encyclopedia Americana

What did Mendel’s findings mean? Some traits mask others purple & white flower colors are separate traits that do not blend purple x white ≠ light purple purple masked white dominant allele functional protein masks other alleles recessive allele allele makes a malfunctioning protein wild type allele producing functional protein mutant allele producing malfunctioning protein homologous chromosomes

Genotype vs. phenotype Difference between how an organism “looks” & its genetics phenotype description of an organism’s trait the “physical” genotype description of an organism’s genetic makeup F1 P X purple white all purple Explain Mendel’s results using …dominant & recessive …phenotype & genotype

PP pp Pp x Making crosses Can represent alleles as letters flower color alleles  P or p true-breeding purple-flower peas  PP true-breeding white-flower peas  pp F1 P X purple white all purple PP x pp Pp

Looking closer at Mendel’s work true-breeding purple-flower peas true-breeding white-flower peas X phenotype P PP pp genotype 100% F1 generation (hybrids) purple-flower peas In a typical breeding experiment, Mendel would cross-pollinate (hybridize) two contrasting, true-breeding pea varieties. The true-breeding parents are the P generation and their hybrid offspring are the F1 generation. Mendel would then allow the F1 hybrids to self-pollinate to produce an F2 generation. Pp Pp Pp Pp self-pollinate 75% purple-flower peas 25% white-flower peas 3:1 F2 generation ? ? ? ?

Punnett squares Pp x Pp F1 P p PP Pp P p PP Pp Pp Pp pp pp 25% 75% 50% generation (hybrids) % genotype % phenotype P p male / sperm PP 25% 75% Pp 50% P p female / eggs PP Pp Pp Pp pp 25% 25% pp 1:2:1 3:1

Genotypes Homozygous = same alleles = PP, pp Heterozygous = different alleles = Pp homozygous dominant heterozygous homozygous recessive

Phenotype vs. genotype 2 organisms can have the same phenotype but have different genotypes homozygous dominant PP purple Pp heterozygous purple How do you determine the genotype of an individual with with a dominant phenotype?

Test cross Breed the dominant phenotype — the unknown genotype — with a homozygous recessive (pp) to determine the identity of the unknown allele x is it PP or Pp? pp

How does a Test cross work? x x PP pp Pp pp p p p p P P Pp Pp Pp Pp P p Pp Pp pp pp 100% purple 50% purple:50% white or 1:1

Mendel’s 1st law of heredity PP P Mendel’s 1st law of heredity Law of segregation during meiosis, alleles segregate homologous chromosomes separate each allele for a trait is packaged into a separate gamete pp p Pp P p

Law of Segregation Which stage of meiosis creates the law of segregation? Metaphase 1

Monohybrid cross Some of Mendel’s experiments followed the inheritance of single characters flower color seed color monohybrid crosses

Dihybrid cross Other of Mendel’s experiments followed the inheritance of 2 different characters seed color and seed shape dihybrid crosses

Dihybrid cross P YYRR yyrr 100% F1 YyRr 9:3:3:1 F2 x true-breeding yellow, round peas true-breeding green, wrinkled peas x YYRR yyrr Y = yellow R = round y = green r = wrinkled 100% F1 generation (hybrids) yellow, round peas YyRr Wrinkled seeds in pea plants with two copies of the recessive allele are due to the accumulation of monosaccharides and excess water in seeds because of the lack of a key enzyme. The seeds wrinkle when they dry. Both homozygous dominants and heterozygotes produce enough enzyme to convert all the monosaccharides into starch and form smooth seeds when they dry. self-pollinate 9:3:3:1 F2 generation 9/16 yellow round peas 3/16 green round peas 3/16 yellow wrinkled peas 1/16 green wrinkled peas

What’s going on here? If genes are on different chromosomes… YyRr YyRr how do they assort in the gametes? together or independently? YyRr Is it this? Or this? YyRr YR yr YR Yr yR yr

YyRr x YyRr YR yr YR YYRR YyRr yr YyRr yyrr Is this the way it works? Do genes sort together during gamete formation? YyRr x YyRr YyRr YR yr YR yr YR YYRR YyRr yr YyRr yyrr

Or, do they sort INDEPENDENTLY? YyRr Yr yR YR yr YyRr x YyRr YR Yr yR yr YR Yr yR yr YYRR YYRr YyRR YyRr YYRr YYrr YyRr Yyrr YyRR YyRr yyRR yyRr YyRr Yyrr yyRr yyrr

Mendel’s 2nd law of heredity Law of independent assortment different loci (genes) separate into gametes independently non-homologous chromosomes align independently classes of gametes produced in equal amounts YR = Yr = yR = yr only true for genes on separate chromosomes or on same chromosome but so far apart that crossing over happens frequently yellow green round wrinkled YyRr Yr Yr yR yR YR YR yr yr 1 : 1 : 1 : 1

Law of Independent Assortment Which stage of meiosis creates the law of independent assortment? Metaphase 1 EXCEPTION If genes are on same chromosome & close together will usually be inherited together rarely crossover separately “linked”

The chromosomal basis of Mendel’s laws… Trace the genetic events through meiosis, gamete formation & fertilization to offspring

Review: Mendel’s laws of heredity Law of segregation monohybrid cross single trait each allele segregates into separate gametes established by Metaphase 1 Law of independent assortment dihybrid (or more) cross 2 or more traits genes on separate chromosomes assort into gametes independently EXCEPTION linked genes metaphase1

Mendel chose peas wisely Pea plants are good for genetic research available in many varieties with distinct heritable features with different variations flower color, seed color, seed shape, etc. Mendel had strict control over which plants mated with which each pea plant has male & female structures pea plants can self-fertilize Mendel could also cross-pollinate plants: moving pollen from one plant to another

Mendel chose peas luckily Pea plants are good for genetic research relatively simple genetically most characters are controlled by a single gene with each gene having only 2 alleles, one completely dominant over the other

Probability & Genetics

Genetics & Probability Mendel’s laws: segregation independent assortment reflect same laws of probability that apply to tossing coins or rolling dice

Probability & genetics Calculating probability of making a specific gamete is just like calculating the probability in flipping a coin probability of tossing heads? probability making a B gamete? BB B 100% Bb B b 50%

Probability & genetics Outcome of 1 toss has no impact on the outcome of the next toss probability of tossing heads each time? probability making a B gamete each time? 50% Bb B b 50%

Calculating probability Pp x Pp sperm egg offspring P PP 1/2 x 1/2 = 1/4 P p male / sperm P p Pp 1/2 x 1/2 = 1/4 + P p female / eggs p P PP Pp 1/2 x 1/2 = 1/4 1/2 Pp pp p pp 1/2 x 1/2 = 1/4

Rule of multiplication Chance that 2 or more independent events will occur together probability that 2 coins tossed at the same time will land heads up probability of Pp x Pp  pp 1/2 x 1/2 = 1/4 Pp P p 1/2 x 1/2 = 1/4

Calculating probability in crosses Use rule of multiplication to predict crosses YyRr YyRr x Yy x Rr x yyrr 1/16 ?% yy rr 1/4 1/4 x

Apply the Rule of Multiplication AABbccDdEEFf x AaBbccDdeeFf AabbccDdEeFF AA x Aa  Aa 1/2 Bb x Bb  bb 1/4 cc x cc  cc 1 Dd x Dd  Dd 1/2 EE x ee  Ee 1 1/64 Ff x Ff  FF 1/4

Rule of addition Chance that an event can occur 2 or more different ways sum of the separate probabilities probability of Bb x Bb  Bb sperm egg offspring B b Bb 1/4 + 1/2 1/2 = x 1/4 b B Bb 1/2 = x 1/4

Chi-square test Test to see if your data supports your hypothesis Compare “observed” vs. “expected” data is variance from expected due to “random chance”? or is there another factor influencing data? null hypothesis degrees of freedom statistical significance