Linear Programming Pre-Calc Section 3.4 Running a profitable business requires a careful balancing of resources (for example, peoples’ time, materials,

Slides:



Advertisements
Similar presentations
Applications of Linear Programming
Advertisements

1. The Problem 2. Tabulate Data 3. Translate the Constraints 4. The Objective Function 5. Linear Programming Problem 6. Production Schedule 7. No Waste.
LIAL HORNSBY SCHNEIDER
Linear Programming Problem
Chapter 5 Linear Inequalities and Linear Programming
5.2 Linear Programming in two dimensions: a geometric approach In this section, we will explore applications which utilize the graph of a system of linear.
Linear Inequalities and Linear Programming Chapter 5 Dr.Hayk Melikyan/ Department of Mathematics and CS/ Linear Programming in two dimensions:
Learning Objectives for Section 5.3
Chapter 5 Linear Inequalities and Linear Programming Section 3 Linear Programming in Two Dimensions: A Geometric Approach.
Lesson 7.6, page 767 Linear Programming
Ch 2. 6 – Solving Systems of Linear Inequalities & Ch 2
Linear Programming?!?! Sec Linear Programming In management science, it is often required to maximize or minimize a linear function called an objective.
Objectives: Set up a Linear Programming Problem Solve a Linear Programming Problem.
Finite Mathematics & Its Applications, 10/e by Goldstein/Schneider/SiegelCopyright © 2010 Pearson Education, Inc. 1 of 54 Chapter 3 Linear Programming,
Linear Programming Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Linear programming is a strategy for finding the.
Systems. Day 1 Systems of Linear Equations System of Linear Equations: two or more linear equations together The solution of the system of equations.
4.3.1 – Systems of Inequalities. Recall, we solved systems of equations What defined a system? How did you find the solutions to the system?
Chapter 5 Linear Inequalities and Linear Programming Section 2 Systems of Linear Inequalities in Two Variables.
3-4 Linear Programming Warm Up Lesson Presentation Lesson Quiz
Determine if the given ordered pair is a solution of
Linear programming Lecture (4) and lecture (5). Recall An optimization problem is a decision problem in which we are choosing among several decisions.
Chapter 12 Section 12.1 The Geometry of Linear Programming.
5 Systems and Matrices © 2008 Pearson Addison-Wesley. All rights reserved Sections 5.6–5.8.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 7.6 Linear Programming.
1 Linear Programming Chapter 2 By Mohammad Shahid Khan M.Eco, MBA, B.Cs, B.Ed. Lecturer in Economics & Business Administration Department of Economics.
Graphing Linear Inequalities in Two Variables Chapter 4 – Section 1.
Opener. Notes: 3.4 Linear Programming Optimization  Many real-life problems involve a process called optimization.  This means finding a maximum or.
Systems of Inequalities in Two Variables Sec. 7.5a.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 5 Systems and Matrices Copyright © 2013, 2009, 2005 Pearson Education, Inc.
Linear Programming Introduction: Linear programming(LP) is a mathematical optimization technique. By “Optimization” technique we mean a method which attempts.
3  Graphing Systems of Linear Inequalities in Two Variables  Linear Programming Problems  Graphical Solutions of Linear Programming Problems  Sensitivity.
5 minutes Warm-Up 1) Solve the system. 2) Graph the solution.
11/20/2015 6:37 AM1 1 LINEAR PROGRAMMING Section 3.4, ©2008.
3.4 Linear Programming Rita Korsunsky. Example: Maximizing a Profit A small TV manufacturing company produces console and portable TV’s using three different.
Warm-up Solve each system of equations:
Linear Programming Ex1) Use the system of constraints below to maximize the objective function z = -0.4x + 3.2y. Corner Points.
Copyright © Cengage Learning. All rights reserved. 3 LINEAR PROGRAMMING: A GEOMETRIC APPROACH.
Warm-upWarm-up Sketch the region bounded by the system of inequalities: 1) 2) Sketch the region bounded by the system of inequalities: 1) 2)
LINEAR PROGRAMMING 3.4 Learning goals represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret.
Section 3-4 Objective: To solve certain applied problems using linear programming. Linear Programming.
3.4: Linear Programming  Intro: Oftentimes we want to optimize a situation - this means to:  find a maximum value (such as maximizing profits)  find.
Linear Programming. What is linear programming? Use a system of constraints (inequalities) to find the vertices of the feasible region (overlapping shaded.
3.3 Linear Programming. Vocabulary Constraints: linear inequalities; boundary lines Objective Function: Equation in standard form used to determine the.
Sullivan Algebra and Trigonometry: Section 12.9 Objectives of this Section Set Up a Linear Programming Problem Solve a Linear Programming Problem.
Linear Programming: A Geometric Approach3 Graphing Systems of Linear Inequalities in Two Variables Linear Programming Problems Graphical Solution of Linear.
Linear programming Lecture (4) and lecture (5). Recall An optimization problem is a decision problem in which we are choosing among several decisions.
Slide 4- 1 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 1 Copyright © 2010 Pearson Education, Inc. Publishing.
GENERAL MATHS – UNIT TWO
October 18 and 19.
2.7 Linear Programming Objectives: Use linear programming procedures to solve applications. Recognize situations where exactly one solution to a linear.
LINEARPROGRAMMING 5/23/ :13 AM 5/23/ :13 AM 1.
Digital Lesson Linear Programming.
Do Now The cost of renting a pool at an aquatic center is either $30 an hr. or $20 an hr. with a $40 non refundable deposit. Use algebra to find for how.
Chapter 5 Linear Inequalities and Linear Programming
Digital Lesson Linear Programming.
Linear Programming Dr. T. T. Kachwala.
Math 1 Warm Up In the Practice Workbook… Practice 7-6 (p. 94)
ALGEBRA II HONORS/GIFTED SECTION 3-4 : LINEAR PROGRAMMING
Linear Programming Objectives: Set up a Linear Programming Problem
Do Now! Solve the system of equations Do all work on the notecard.
Factor as many polynomials as you can.
3-4 Linear Programming Warm Up Lesson Presentation Lesson Quiz
Factor as many polynomials as you can.
Systems of Inequalities and Linear Programming
Chapter 7: Systems of Equations and Inequalities; Matrices
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
LINEARPROGRAMMING 4/26/2019 9:23 AM 4/26/2019 9:23 AM 1.
Nature does nothing uselessly.
10.8 Linear Programming.
Presentation transcript:

Linear Programming Pre-Calc Section 3.4 Running a profitable business requires a careful balancing of resources (for example, peoples’ time, materials, and machine availability). A manager must choose the best use of these resources. Often the range of possible choices can be described by a set of linear inequalities, called—constraints. In most situations the number of alternative solutions to the constraints is so great that it is hard to find the best one. Linear Programming -- a process which makes many previously impossible problems solvable.

Example 1: suppose that a small TV manufacturing company produces Flat Screen and ‘big Screen’ TV’s, using three different machines, A, B, and C. The table below shows how many hours are required on each machine per day in order to produce a ‘Flat Screen’ TV or a Big Screen’ TV. Hours Machine | Flat Screen | Big Screen | Available | A | 1 h | 2 h | 16 | A | 1 h | 2 h | 16 | B | 1 h | 1 h | 9 | B | 1 h | 1 h | 9 | C | 4 h | 1 h | 24 | C | 4 h | 1 h | 24 | 1 st : let x = Number of Flat Screen TV’s y = Number of Big Screen TV’s Now using the information in this chart along with some common sense, we can come up with the following:

a. x > 0 (The number of TV’s cannot be negative) b.y > 0 (Now machine A needs 1 hour for each Flat Screen TV and 2 hours for each Big Screen TV. Thus for ‘x’ Flat Screen’s c. x+2y < 16 and ‘y’ Big Screen’s Machine A needs ‘1x + 2y’ hours. Since this machine is available for at most 16 hours a day, x + 2y < 16) (The last two inequalities are similar to the one above. Machines B and C are d.x+y < 9 available for at most 9 hours and 24 e.4x+ y < 24 respectively) Now sketch the graph of all ‘5’ inequalities ‘simultaneously Check out graphs ‘a-e’ located at bottom of page 109)

Now suppose that the manufacturing company described earlier makes a $60 profit on ‘Flat Screen’s’ and a $40 profit on each ‘Big Screen’. How many ‘Flat Screens’ and how many ‘Big Screens’ should be produced each day to maximize the profit? The profit for x Flat Screens and y Big Screens  P = 60x + 40y (dollars) To save us the time of plugging in all possible (x,y) Ordered pairs in our ‘feasible region’ research has been Done to show that a maximum or a minimum value will Always occur at a ‘corner point’ Therefore all we need to do is check the ‘5’ corner (x,y) Points to realize the maximum! Notice figure on pg 110 and the ‘blue’ profit lines shown. Also notice what each profit is equal to, so you can identify when the maximum profit is reached  at (5,4)

Example 2 Minimizing a cost Every day Rhonda Miller needs a dietary supplement of 4 mg of vitamin A, 11 mg of vitamin B, and 100 mg of Vitamin C. Either of two brands of vitamin pills can be used: Brand X at 6 cents a pill or Brand Y at 8 cents per pill. The chart below shows that a Brand X pill supplies 2 mg of Vitamin A, 3 mg of vitamin B, and 25 mg of vitamin C. Likewise, a Brand Y pill supplies 1, 4, and 50 mg respectively. How many pills of each brand should she take each day in order to satisfy the minimum daily need most economically? | | Brand X | Brand Y | Minimum daily need| | Vitamin A | 2 mg | 1 mg | 4 mg | | Vitamin B | 3 mg | 4 mg | 11 mg | | Vitamin C | 25 mg | 50 mg | 100 mg | |Cost per pill | 6 cents | 8 cents | |

Solution: Let x = number of Brand X pills y = number of Brand Y pills System of inequalities: x > 0 y > 0 2x + y > 4 3x + 4y > 11 x + 2y > 4 Determine the feasible region by graphing the system of inequalities. The cost (in cents) can be expressed by the equation C = 6x + 8y. Evaluate the cost at each corner point.