Copyright Pearson Prentice Hall

Slides:



Advertisements
Similar presentations
Chapter 17: The History of Life
Advertisements

1 Explain What does Miller and Urey’s experiment tell us about the organic compounds needed for life Predict You just read that life arose from nonlife.
History of the Earth Chapter 14.
History of the Earth Chapter 14. Formation of the Earth.
The Mysteries of Life’s Origins
The History of Life Unit V Chapter 17.
Unit 5 Evolution Ch. 17 The History of Life.
Slide 1 of 36 Copyright Pearson Prentice Hall Biology.
Chapter 17 Section 2 Earth’s Early History
17-2 Earth’s Early History
Early Earth Notes. The earth was formed 4.6 billion years ago! So what was it like?
Chapter 19 – History of Life
Earth's Early History.
17-2 E ARTH ’ S E ARLY H ISTORY. I. F ORMATION OF THE E ARTH.
1copyright cmassengale Modern Ideas on the Origin of Life.
End Show Slide 1 of 36 Copyright Pearson Prentice Hall 17-2 Earth's Early History.
The History of Life Chapter 12. Fossils and Ancient Life A fossil is the preserved remains or evidence of an ancient organism Scientists who study fossils.
Copyright Pearson Prentice Hall
Unit 5 Evolution Ch. 17 The History of Life. Fossils & Ancient Life Paleontologists - scientists that study fossils From fossils, scientists can infer.
Lesson Overview 19.3 Earth’s Early History.
Evolution Chapter 17 Regents.
Lesson Overview 19.3 Earth’s Early History.
AP Biology Origin of Life “…sparked by just the right combination of physical events & chemical processes…”
End Show Slide 1 of 36 Copyright Pearson Prentice Hall Origin of Life.
Lesson Overview Lesson Overview Earth’s Early History Lesson Overview 19.3 Earth’s Early History.
Chapter 17 Origins of Life. Astrobiology is study of the origin, evolution, distribution, & destiny of life in the universe. It attempts to answer 3 fundamental.
AP Biology The History of Life “…sparked by just the right combination of physical events & chemical processes…”
Origin of Life on Earth. Formation of Earth Our knowledge of earth’s history Hypotheses about Earth’s early history are based on a relatively small amount.
Origins of Life on Earth
Foothill High School Science Department The History of Life Earth’s Early History.
The History of Life 14.1 Fossil Evidence of Change Land Environments The History of Life Chapter 14  Earth formed about 4.6 billion years ago.  Gravity.
Fossil Evidence of Change Land Environments The History of Life Section 1  Earth formed about 4.6 billion years ago.  Gravity pulled the densest elements.
Paleontologist: scientist who studies fossils Fossil: preserved remains or evidence of an ancient organism Extinct: term used to refer to a species that.
The Origin and History of Life. What is a theory? An explanation widely accepted and supported by evidence Remember- –Theories are just as important or.
Early Earth Conditions. Origin of Life Beliefs 1. Spontaneous Generation- idea that nonliving material can produce life ex. People believed decaying meat.
Go to Section: 17–1The Fossil Record A.Fossils and Ancient Life B.How Fossils Form C.Interpreting Fossil Evidence 1.Relative Dating 2.Radioactive Dating.
History of Life Vocab Evolution of Life Miller- Urey Exp. Review Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q $200 Q $300 Q $400 Q $500 Final Jeopardy.
1.5 The Origin of Cells. Essential Idea There is an unbroken chain of life from the first cells on Earth to all cells in organisms alive today.
Where are we in the universe?
Chapter 17.2: Earth’s Early History.
History of Life. Fossil Record 1.Evidence about the history of life on Earth 2.How different organisms changed over time 3.What organisms lived during.
Where did life come from?. First, where did the earth come from? Everything appears to have started with the Big Bang – about 14 billion years ago. The.
Chapter 19/20 Section 19-3: Earth’s Early History.
End Show Slide 1 of 36 Biology Earth History Oparin Hypothesis Mr. Karns.
 EQ: How were eukaryotic cells originally formed?
Earth’s Early History and Evolution of Multicellular Life
Theory of Evolution Bio. Standard Key Concepts What was the early atmosphere like? How do experiments suggest first “cells” may have evolved? How.
Topic 15 Theory of Evolution Day 1. Origins of Life.
17-1 The fossil Record 17-2 Earth’s Early History 17-3 Evolution of Multicellular life 17-4 Patterns of Evolution.
The History of Life Chapter 17. Fossils and Ancient Life Fossil → Any part of, trace of, or preserved remains of ancient life –Fossils may be all, part,
Origin of Life “…sparked by just the right combination of physical events & chemical processes…”
Chapter 19 Sect 3. Biogenesis Production of new or living organisms. Living things come from living things. Ex: Spider eggs become spiders Scientists.
Lesson Overview 19.3 Earth’s Early History. THINK ABOUT IT How did life on Earth begin? What were the earliest forms of life? How did life and the biosphere.
Chapter 17 Section 2 Formation of Earth -Earth is believed to have been created about 4.6 billion years ago -pieces of cosmic debris attracted to one another.
CHAPTER 17 THE HISTORY OF LIFE
Lesson Overview 19.3 Earth’s Early History.
Theories of the Origin of Life
Chapter 17.2: Earth’s Early History.
A PREFACE TO THE THEORY OF EVOLUTION
Origin of Life What do you think the first organism was like?
Earth’s Early History (Ch 19.3)
Outline 17-2: Earth's Early History
What is Evolution? Copyright Pearson Prentice Hall.
A PREFACE TO THE THEORY OF EVOLUTION
History of Early Earth.
Outline 17-2: Earth's Early History
Copyright Pearson Prentice Hall
The History of Life Earth’s Early History.
Earth’ s Early History.
GEOLOGIC TIME.
Presentation transcript:

Copyright Pearson Prentice Hall Formation of Earth What substances made up Earth's early atmosphere? Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Formation of Earth Earth's early atmosphere probably contained hydrogen cyanide, carbon dioxide, carbon monoxide, nitrogen, hydrogen sulfide, and water. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Formation of Earth Scientists infer that about four billion years ago, Earth cooled and solid rocks formed on its surface. Millions of years later, volcanic activity shook Earth’s crust. About 3.8 billion years ago, Earth’s surface cooled enough for water to remain a liquid, and oceans covered much of the surface. Copyright Pearson Prentice Hall

The First Organic Molecules Could organic molecules have evolved under conditions on early Earth? In the 1950s, Stanley Miller and Harold Urey tried to answer that question by simulating conditions on the early Earth in a laboratory setting. Copyright Pearson Prentice Hall

The First Organic Molecules What did Miller and Urey's experiments show? Copyright Pearson Prentice Hall

The First Organic Molecules Miller and Urey’s Experiment Mixture of gases simulating atmosphere of early Earth Spark simulating lightning storms Condensation chamber Water vapor Cold water cools chamber, causing droplets to form. Miller and Urey produced amino acids, which are needed to make proteins, by passing sparks through a mixture of hydrogen, methane, ammonia, and water. This and other experiments suggested how simple compounds found on the early Earth could have combined to form the organic compounds needed for life. Liquid containing amino acids and other organic compounds Copyright Pearson Prentice Hall

The First Organic Molecules Miller and Urey's experiments suggested how mixtures of the organic compounds necessary for life could have arisen from simpler compounds present on a primitive Earth. Although their simulations of early Earth were not accurate, experiments with current knowledge yielded similar results. Copyright Pearson Prentice Hall

The Puzzle of Life's Origins Evidence suggests that 200–300 million years after Earth had liquid water, cells similar to modern bacteria were common. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Free Oxygen Free Oxygen Microscopic fossils, or microfossils, of unicellular prokaryotic organisms resembling modern bacteria have been found in rocks over 3.5 billion years old. These first life-forms evolved without oxygen. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Free Oxygen About 2.2 billion years ago, photosynthetic bacteria began to pump oxygen into the oceans. Next, oxygen gas accumulated in the atmosphere. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Free Oxygen What occurred when oxygen was added to Earth's atmosphere? Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Free Oxygen The rise of oxygen in the atmosphere drove some life forms to extinction, while other life forms evolved new, more efficient metabolic pathways that used oxygen for respiration. Copyright Pearson Prentice Hall

Origin of Eukaryotic Cells What hypothesis explains the origin of eukaryotic cells? Copyright Pearson Prentice Hall

Origin of Eukaryotic Cells The Endosymbiotic Theory The endosymbiotic theory proposes that eukaryotic cells arose from living communities formed by prokaryotic organisms. Copyright Pearson Prentice Hall

Origin of Eukaryotic Cells Endosymbiotic Theory Ancient Prokaryotes Chloroplast Plants and plantlike protists Aerobic bacteria Photosynthetic bacteria Nuclear envelope evolving Mitochondrion Primitive Photosynthetic Eukaryote The endosymbiotic theory proposes that eukaryotic cells arose from living communities formed by prokaryotic organisms. Ancient prokaryotes may have entered primitive eukaryotic cells and remained there as organelles. Animals, fungi, and non-plantlike protists Ancient Anaerobic Prokaryote Primitive Aerobic Eukaryote Copyright Pearson Prentice Hall

Origin of Eukaryotic Cells About 2 billion years ago, prokaryotic cells began evolving internal cell membranes. The result was the ancestor of all eukaryotic cells. According to the endosymbiotic theory, eukaryotic cells formed from a symbiosis among several different prokaryotes. Copyright Pearson Prentice Hall

Origin of Eukaryotic Cells Aerobic bacteria Ancient Prokaryotes Nuclear envelope evolving The endosymbiotic theory proposes that eukaryotic cells arose from living communities formed by prokaryotic organisms. Ancient prokaryotes may have entered primitive eukaryotic cells and remained there as organelles. Ancient Anaerobic Prokaryote Copyright Pearson Prentice Hall

Origin of Eukaryotic Cells Prokaryotes that use oxygen to generate energy-rich molecules of ATP evolved into mitochondria. Mitochondrion The endosymbiotic theory proposes that eukaryotic cells arose from living communities formed by prokaryotic organisms. Ancient prokaryotes may have entered primitive eukaryotic cells and remained there as organelles. Primitive Aerobic Eukaryote Copyright Pearson Prentice Hall

Origin of Eukaryotic Cells Prokaryotes that carried out photosynthesis evolved into chloroplasts. Chloroplast Photosynthetic bacteria The endosymbiotic theory proposes that eukaryotic cells arose from living communities formed by prokaryotic organisms. Ancient prokaryotes may have entered primitive eukaryotic cells and remained there as organelles. Primitive Photosynthetic Eukaryote Copyright Pearson Prentice Hall