Integration of binary power plants at geothermal low temperature sites

Slides:



Advertisements
Similar presentations
© OECD/IEA 2010 Data Compilation Issues for Electricity and Heat Energy Statistics Workshop Beijing, China, Sept Pierre Boileau International Energy.
Advertisements

Low Energy Building Design Group B Romain Jauffres, Karen Kennedy, Pedro Ros Zuazua, Ulrich Sanson Embedded Generation.
HEALTHCARE BUILDING AUTOMATION
1 Optimizing the Efficiency of the NCAR-Wyoming Supercomputing Center Ademola Olarinde Team Member: Theophile Nsengimana Mentor: Aaron Andersen August.
© Fraunhofer IBP Auf Wissen bauen Energy vs exergy use in buildings Fraunhofer Institute for Building Physics (IBP) Department Energy Systems Christina.
CARBERY MILK PRODUCTS BALLINEEN Co. Cork Energy Saving Programme Application of “Pinch” Technology.
Heat pumps and their economics. There has been fluctuations before Johnson Controls2.
IEA HPP Annex 28 Calculation method Workshop IEA HPP Annex 28 8 th International Heat Pump Conference, Las Vegas, 30 May 2005 Carsten Wemhöner, Operating.
Geothermal Energy: Natural heat energy produced by the Earth Geo (Earth) Thermal (Heat)
1. Introduction Highlights: Founded in 2005 Approx. 50 Employees Patented & Patent-Pending Technology Headquarters - Reno, Nevada EU Sales and Service.
IIFREEE 2014 for MENA – AMMAN, JORDAN ORC-Based Heat Recovery System for Energy Efficient Industries By: Dr. Salih Manasra CEO
“Energy Efficiency Guide for Industry in Asia”
Geo-Thermal Power Jim Henry UTC. Geo-Thermal Power Nevada Cooling towers Opportunity.
Presentation Technology ORC GREEN MACHINE
PUNTO ENERGIA Experience in Implementing and installing co-generation and energy- saving schemes Eng. Michele Vio President of AICARR Eng.
Trapping the Earth’s Internal Heat
COGENERATION Allison M. Selk 12/8/04 CBE 562.
Geothermal Energy David McArdle. What is it? Geothermal energy - The process of extracting power from underground heat that is produced by the earth’s.
Geothermal- Overview Howard Rogers. Geothermal Technology- 3 major areas of Direct use of hot geothermal fluids Generation of electricity using- Steam.
Cogeneration.
ISAT Module III: Building Energy Efficiency
Renewable Technologies Available in Ireland Paul Kane.
Thermodynamics of Industrial Cooling Towers
Electricity from Geothermal. Developing the Geothermal Resource for Power Generation  Geothermal Well Characteristics  Vapor Dominated  Dry Steam 
Combined Heat and Power ITT experience in Coal Technologies Andrzej Ziębik Institute of Thermal Technology, SUT.
GEOTHERMAL POWER PLANT
Geothermal Power Dr. Harris Phys 105 4/3/13.
GEOTHERMAL ENERGY NIGERIA’S FUTURE ENERGY. Geothermal energy: An overview Energy stored in the earth Originates from planet’s formation and radio active.
Chilled water Meyrin consolidation Study 1 st Part Many thanks for their contribution to: Pasquale Alemanno, Fortunato Candito, Alexander Putzu.
Mission Energy: Energy Efficient Cooling How Data Centre energy consumption and operating costs can be significantly reduced through readily available.
Plant Utility System (TKK-2210) 14/15 Semester 4 Instructor: Rama Oktavian Office Hr.: M-F
Lecture Objectives: Specify Exam Time Finish with HVAC systems –HW3 Introduce Projects 1 & 2 –eQUEST –other options.
Geothermal Energy A Hot Topic.
BDS Magnet-Power System-Facility Optimization1 ILC BDS Kickoff Meeting Basis for Magnet, Power System and Cooling Facility Optimization Discussion Paul.
Geothermal Energy, Tapping the Earth’s Internal Heat Tim Mervine Anna Chandler
IMPROVING COOLING SYSTEM EFFICIENCY WITH PRE-COOLING AJ Schutte 15 August 2012.
Geothermal Heat Pumps Connecticut Geothermal Association John Sima, PE.
Chelsey Colvin Geothermal Energy What is Geothermal Energy? Geothermal energy is a renewable source of energy that barely does any damage to the environment.
‘ Inexhaustible Source…’. OBJECTIVES…  To decrease the use of non- renewable energy sources by using solar energy.  To solve the problem of “GLOBAL.
How can geothermal energy be used for electricity generation? Akihiro Nimura.
Chapter 13 Renewable Energy and Conservation. Overview of Chapter 13  Direct Solar Energy  Indirect Solar Energy  Wind  Biomass  Hydropower  Geothermal.
Session 5 Geothermal Power Plant. What is Geothermal Energy? Geo (Greek) – earth Thermal - relating to, using, producing, or caused by heat.
Diagram from the publication
Geothermal Energy Braden and Matthew.
Chapter 19 Alternative Energy and the Environment.
We can…. 2 GLOBAL REFERENCES Rev: 00 References :
Wind Energy No waste - clean source of energy Biggest constraints: – Cost – Public resistance (NIMBY)  Few environmental problems  Kills birds and bats.
Introduction to Energy Management. Week/Lesson 9 part a Evaporative Cooling and Cooling Towers.
Geothermal Energy By: Matthew A, Larry N, Garret S, Kevin D, Zachary S.
Steam Power including Geothermal Energy SPH4C. Geothermal Energy Geothermal energy is heat generated in the interior of the Earth by the decay of radioactive.
Thermal Energy Storage Thermal energy storage (TES) systems heat or cool a storage medium and then use that hot or cold medium for heat transfer at a later.
Sustainable Energy Technologies MSE Miscellaneous Eduard Latõšov.
__________________________ © Cactus Moon Education, LLC. Cactus Moon Education, LLC. CACTUS MOON EDUCATION, LLC ENERGY FROM.
Johnson Controls1 Heat Pump Jean-Pierre Perron Sales Executive Johnson Controls,division YORK 0499/
GeoforschungsZentrum Potsdam - GFZ m Geodesy & Remote Sensing m Physics of the Earth m Geodynamics m Chemistry of the Earth m Geoengineering m Basic Research.
Geothermal Energy Jesus Soto.
Geothermal Energy Renewable Resources. Introduction to Geothermal Energy OjV26Q
GFZ experience in reservoir development. Operations at the site Groß Schönebeck  2000 reopening of a abbandoned gas well  2001 primary hydraulic test.
CASE STUDY : Solar Powered air conditioning as a solution to reduce environmental pollution in Tunisia.
Sustainable Energy Technologies MSE0290
The Data Center Challenge
Ocean Thermal Energy Conversion activities at Process & Energy
Combined operation of different power plants PREPARED BY : Priyanka Grover Btech (EE) SBSSTC,FZR.
Chapter 6 Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism Topic 7 Physical Infrastructure of WSC Prof. Zhang Gang
POWER PLANT THERMAL POWER STATION.
COOLING & VENTILATION INFRASTRUCTURE
Different scales of installation
Energy Conservation CERD /12/2017
Visualization of energy flows in PVT systems Template and Examples A companion document of Report D4 of Task 60 DOI: A visualization scheme for the uniform.
Chapter HEAT AND ELECTRICITY GENERATION AND SYSTEM INTEGRATION
Presentation transcript:

Integration of binary power plants at geothermal low temperature sites Stephanie Frick GFZ National Research Centre for Geosciences in Germany International Centre for Geothermal Research (ICGR) DAP Symposium Delft February 25th 2015

Vortrag Prof. Hüttl, Welcome H. E. Hon. Jose A. Atienza, 23.6.2009 15.12.08 Abstimmungsgespräch BGR Vortrag Prof. Hüttl, Welcome H. E. Hon. Jose A. Atienza, 23.6.2009 Research Profile of GFZ Earth System Analysis / Departments Geodesy & Remote Sensing Physics of the Earth Geodynamics and Geomaterials Chemistry and Material Cycles Earth Surface Processes Earth System Management / Geoengineering Centres Centre for CO2 Storage (CGS) International Centre for Geothermal Research (ICGR) Centre for Early Warning Centre for Geoinformation Technology (CeGIT) Centre for Geoecological Research (CGR) Earth System Monitoring / Scientific Infrastructures MESI (Modular Earth Science Infrastructure) Observatories (plate boundary, global change, TERENO) Global networks (e.g. GEOFON) Scientific Drilling Das Forschungsprofil des GFZ versucht, mit seinem umfassenden Ansatz der Komplexität des Systems Erde gerecht zu werden. In allen diesen Forschungsbereichen finden sich energierelevante Themen. Wir bearbeiten konventionelle und nichtkonventionelle fossile Brennstoffe; wir untersuchen deren geologische Entstehungsbedingungen ebenso wie die mögliche geologische Speicherung des Abfallgases CO2. Wir untersuchen die Bildung von methanhydraten im Labor ebenso wie in der Natur. Und wir kümmern uns um die nachhaltige Energieversorgung durch Erdwärme nicht nur zum Heizen, sondern auch zur Stromversorgung. D1 Der Schwerpunkt unserer Arbeit ist, die Figur und Rotation der Erde, ihre Orientierung im Raum, ihre Oberfläche und ihr Gravitationsfeld in allen Einzelheiten zu vermessen. D2 Dabei haben wir nicht nur die Vorgänge im Erdinnern, sondern auch das Magnetfeld der Erde im Blick. (Magnetfeld, Vulkanismus, Erdbeben, Seismologie, geodynamische modellierung D3 wie dort die Bewegungen im Inneren unseres Planeten ablaufen, sei es die langsame Drift der Lithosphärenplatten oder die äußerst schnellen Vorgänge in einem Erdbebenherd. Gleichzeitig vollziehen wir in Laborversuchen im Detail nach, was im Gestein geschieht, wenn es beispielsweise in einem Erdbeben bricht, in die Tiefen des Erdmantels taucht oder als Magma schmilzt. D4 Transport von Materie und Energie, Stoffeigenschaften und die Transportprozesse von Geomaterialien zu erforschen und zu verstehen. Dabei befassen wir uns auch mit den Wechselwirkungen zwischen Geo-, Bio-, Hydro- und Atmosphäre. D5 Natürliche Variationen und menschliche Eingriffe in die Landschaft und Stoffkreisläufe führen zu Veränderungen an der Haut der Erde und koppeln sich zurück auf das Gesamtsystem. Verknappung nutzbarer Böden, Landschafts- und Klimawandel wirken sich direkt auf den menschlichen Lebensraum aus. Die Messung und Modellierung dieser Vorgänge und Wechselwirkungen auf aktuellen und geologischen Zeitskalen sind der Schwerpunkt der Forschungsarbeiten in unserem Department. International Centre for Geothermal Research (ICGR) Helmholtz Centre Potsdam German Research Centre for Geosciences 2

Cogeneration of electricity and heat at geothermal low temperature sites? Combined heat and power (CHP)  simultaneous generation of electricity and heat in the same plant Electricity Heat

Cogeneration of electricity and heat at geothermal low temperature sites? Combined heat and power (CHP)  simultaneous generation of electricity and heat in the same plant Electricity Heat 30...50°C . 85…95% of Qin (~5…30MWth/doublet) 100...150°C

Cogeneration of electricity and heat at geothermal low temperature sites? Combined heat and power (CHP)  simultaneous generation of electricity and heat in the same plant Electricity Heat 30...50°C . 85…95% of Qin (~5…30MWth/doublet) 100...150°C Lindal-Diagram Source: http://www.geothermal-energy.org/314,what_is_geothermal_energy.html

Cogeneration of electricity and heat at geothermal low temperature sites? Combined heat and power (CHP)  simultaneous generation of electricity and heat in the same plant  No typical application for geothermal low temperature sites Electricity Heat 30...50°C . 85…95% of Qin (~5…30MWth/doublet) 100...150°C

Cogeneration of electricity and heat at geothermal low temperature sites? Serial and/or parallel coupling of electricity and heat supply Plant concept depending on Reservoir characteristics e.g. available temperature, reservoir productivity / pumping effort Geothermal fluid composition e.g. temperature limit for geothermal fluid use (scaling), fluid-material-interactions (corrosion) Heat demand characteristics e.g. maximum load, base load, temperature level Electricity Heat ’Chill‘

Cogeneration of electricity and heat at geothermal low temperature sites? Serial and/or parallel coupling of electricity and heat supply Plant concept depending on Reservoir characteristics e.g. available temperature, reservoir productivity / pumping effort Geothermal fluid composition e.g. temperature limit for geothermal fluid use (scaling), fluid-material-interactions (corrosion) Heat demand characteristics e.g. maximum load, base load, temperature level But don’t forget about the cooling of the binary power plant! Waste heat Electricity Heat ’Chill‘

Cooling of low temperature power plants Large amounts of waste heat  cooling system = largest component Wet cooling tower 3stage-ORC ORC-Plants Groß Schönebeck Source: GFZ Air-cooled condenser 1stage-ORC ORC-Plant Landau Source: geox

Cooling system basics Air-cooled condenser Theoretical minimum temperature for condensation: dry air temperature Tair Real plant: Tcond=Tair + ΔTITD

Cooling system basics Wet cooling tower Air-cooled condenser Theoretical minimum temperature for condensation: wet bulb temperature TWB Real plant: Tcond=TWB + ΔTapproach+ ΔTCW+ ΔTPP Air-cooled condenser Theoretical minimum temperature for condensation: dry air temperature Tair Real plant: Tcond=Tair + ΔTITD

Cooling of low temperature power plants Type of cooling system & cooling system design  site conditions  cooling water availability & cooling water quality Wet cooling tower  0.3…1 kg/s per MWth waste heat  disposal of elutriation water Once-through cooling  10…50 kg/s per MWth waste heat river Air-cooled condenser  0 kg/s per MWth waste heat Trickle grid (source: GEA) Film fill (source: GEA)

Cooling of low temperature power plants Type of cooling system & cooling system design  site conditions  cooling water availability & cooling water quality  space available Once-through cooling  no special requirement Wet cooling tower  8…15 m2 per MWth waste heat river Air-cooled condenser  20…50 m2 per MWth waste heat air flow area

Cooling of low temperature power plants Type of cooling system & cooling system design  site conditions  cooling water availability & cooling water quality  space available and/or project budget Example ORCs with air-cooled condenser Example ORCs with wet cooling tower ORC1: Brine 150°C & 30 kg/s, working fluid n-butane ORC2: Brine 120°C & 60 kg/s, working fluid isobutane

Cooling of low temperature power plants Type of cooling system & cooling system design  site conditions  cooling water availability & cooling water quality  space available and/or project budget Example ORCs with air-cooled condenser  20…50 m2 per MWth Example ORCs with wet cooling tower  8…15 m2 per MWth ORC1: Brine 150°C & 30 kg/s, working fluid n-butane ORC2: Brine 120°C & 60 kg/s, working fluid isobutane

Cooling of low temperature power plants Auxiliary power for fans and cooling water pumps need to be considered  gross power and auxiliary power demand ꜛ with ꜜ condensation temp.  optimum condensation temperature ORC with air-cooled condenser ORC with wet cooling tower

Cooling of low temperature power plants Auxiliary power for fans and cooling water pumps need to be considered  gross power and auxiliary power demand ꜛ with ꜜ condensation temp.  optimum condensation temperature  optimum ITD / approach Initial temperature difference ITD = Tcond - Tair Approach to wet bulb temp. Approach = Tcold water – TWB ORC with air-cooled condenser ORC with wet cooling tower

Cooling of low temperature power plants Auxiliary power for fans and cooling water pumps need to be considered  gross power and auxiliary power demand ꜛ with ꜜ condensation temp.  optimum condensation temperature  optimum ITD / approach  optimum ITD / approach depends on air flow area (8…13 kWel/MWth WH) Initial temperature difference ITD = Tcond - Tair Approach to wet bulb temp. Approach = Tcold water – TWB

Summary Serial and/or parallel coupling of electricity and heat supply most typical for geothermal low temperature sites Plant concept for cogeneration depending on > Reservoir characteristics & geothermal fluid composition > Heat demand characteristics Large amounts of waste heat  cooling system = largest component Typical cooling systems: air-cooled condensers & cooling towers Type of cooling system & cooling system design  cooling water availability & cooling water quality  space available and/or project budget  optimum ITD / approach depending on air flow area  Design of cooling system should be integrated as early as possible in the plant design process ( influence on working fluid selection, heat exchanger dimensioning, turbine design…)

Thank you very much for your attention!

Cooling of low temperature power plants Auxiliary power for fans and cooling water pumps need to be considered  gross power and auxiliary power demand ꜛ with ꜜ condensation temp.  optimum condensation temperature  optimum ITD / approach Approach to wet bulb temp. Approach = Tcold water – TWB ORC with wet cooling tower