REGULATION OF ACID BASE BALANCE: It means regulation of pH of body fluids. pH = -log [H+] pH of arterial blood = 7.4 pH of venous blood = 7.35 (because.

Slides:



Advertisements
Similar presentations
Water, Electrolyte, and Acid–Base Balance
Advertisements

Water, Electrolytes, and
Homeostasis.
Acids and Bases – their definitions and meanings Molecules containing hydrogen atoms that can release hydrogen ions in solutions are referred to as acids.
Lactic Acidosis Dr. Usman Ghani 1 Lecture Cardiovascular Block.
1.  pH = - log [H + ]  H + is really a proton  Range is from  If [H + ] is high, the solution is acidic; pH < 7  If [H + ] is low, the solution.
Physiology Blood Buffer System Behrouz Mahmoudi.
A CID -B ASES /G ASES IN BLOOD Under the supervision of : Dr. Malek Al – Qub.
Unit Five: The Body Fluids and Kidneys
HUMAN RENAL SYSTEM PHYSIOLOGY Lecture 11,12
Unit III: Homeostasis Acid-Base Balance Chapter 24: pp
CO 2 transport in blood: 1. Dissolved approx 7% 2. Combined with Hemoglobin10–20% 3. As bicarbonate83%
ACID BASE BALANCE Lecture – 8 Dr. Zahoor 1. ACID BASE BALANCE 2  Acid Base Balance refers to regulation of free (unbound) H + concentration in the body.
Dr. Saidunnisa Professor of Biochemistry Acids, bases, conjugate acid base pairs, body buffers.
Renal Acid-Base Balance. Acid An acid is when hydrogen ions accumulate in a solution. It becomes more acidic [H+] increases = more acidity CO 2 is an.
Acid, Base, Electrolytes Regulation for BALANCE. Fluid Compartments.
Advanced Physiology (part 3, Acid-base balance)
Acid-Base Balance for Allied Health Majors Using the Henderson-Hasselbach Equation H 2 O + CO 2 H 2 CO 3 H + + HCO 3 - pH = pK + log HCO 3 - pCO 2 ( α.
Dr. Saidunnisa Professor Of Biochemistry Acid-Base regulation.
Acidosis & Alkalosis Presented By Dr. Shuzan Ali Mohammed Ali.
Acid-Base Imbalance NRS What is pH? pH is the concentration of hydrogen (H+) ions The pH of blood indicates the net result of normal acid-base.
1 Acid –Base Imbalance Dr. Eman EL Eter. Acid-Base Imbalances 2 pH< 7.35 acidosis pH > 7.45 alkalosis PCO2= mmHg HCO3- = mEq/L The body response.
(Renal Physiology 9) Acid-Base Balance 1
1 Acid-Base Balance  Normal pH of body fluids  Arterial blood is 7.4  Venous blood and interstitial fluid is 7.35  Intracellular fluid is 7.0  Alkalosis.
Acid-Base Balance.  Blood - normal pH of 7.2 – 7.45  7.45 = alkalosis  3 buffer systems to maintain normal blood pH 1. Buffers 2. Removal of CO 2 by.
H + homeostasis The mechanisms by which the body keeps the plasma [H + ] constant 
Physiology of Acid-base balance-I Dr. Eman El Eter.
Module H: Carbon Dioxide Transport Beachey – Ch 9 & 10 Egan – pp ,
Acid-Base Balance Disturbances. Acids are produced continuously during normal metabolism. (provide H+ to blood) H + ion concentration of blood varies.
Amount of NaCl body determines the volume of ECF Change in the amount of NaCl always leads to change in ECF volume! Change in ECF volume causes change.
Acid-Base Balance. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Objectives Explain how the pH of the blood.
Fluids and Acid Base Physiology Dr. Meg-angela Christi Amores.
(Renal Physiology 10) Acid-Base Balance 2 Buffers System Ahmad Ahmeda Cell phone:
ACID-BASE BALANCE  AIMS:  What are acids and bases?  What is pH?  Why does pH vary?  How do you regulate pH?
Acid-Base Balance Disturbances
Acid-Base Balance Dr Taha Sadig Ahmed. At the end of the acid-base balance course, the students should be able to: 1.understand the need for precise regulation.
Transport of O 2 in blood: 1. Some dissolved  1.5% at normal atmospheric pressure 2. Most combined with hemoglobin  98.5%
Acid Base Balance Dr. Eman El Eter.
Dr.Mohammed Sharique Ahmed Quadri Assistant professor physiology Al Amaarefa College ACID BASE BALANCE.
1 Acid and Base Balance and Imbalance. 2 pH Review pH = - log [H + ] H + is really a proton Range is from If [H + ] is high, the solution is acidic;
Buffer systems. RESPONSES TO: ACIDOSIS AND ALKALOSIS Mechanisms which protect the body against life-threatening changes in hydrogen ion concentration:
March 16Acid-base balance1 Kidneys and acid-base balance.
Dr. Rida Shabbir DPT –IPMR (KMU). Acid Base Balance Acid: is any chemical that releases H ion in solution. Strong acid: Ionizes freely, gives up most.
Acid-base Regulation in human body
I. pH of Body Fluids water ionizes to form protons (H + ) and proton acceptors (OH - ) A. Remember that to an extent water ionizes to form protons (H.
Acid-base balance and acid-base disturbance. I.regulation of acid-base balance 1. origin of acid and base in the body volatile acid: H 2 CO 3 (15mol/day)
Acid-Base Balance Prof. Omer Abdel Aziz. Objectives Definition Regulation Disturbances.
ACID-BASE BALANCE Acid-base balance means regulation of [H+] in the body fluid. Only slightly changes in [H+] from the normal value can cause marked alteration.
Acid-Base Imbalance.
Department of Biochemistry
Acid-Base Balance – 2nd Lab
Acid-Base Imbalance.
Blood Buffers.
ACID-BASE BALANCE pH is a measure of H + pH = - log [H +] Importance:
ACID BASE DISTURBANCES
Acid-Base Imbalance.
Blood Gases, pH and Buffer system
Homeostasis The Interstitial Fluid is the environment of the cells, and life depends on the constancy of this internal sea. Homeostatic Mechanisms : Maintain.
Acid-Base Imbalance.
Acid-Base Balance.
Acid Base Balance in the body
Acid-Base Balance – 2nd Lab
Acid-Base Balance.
Acid-Base Balance.
RENAL CONTROL OF ACID-BASE BALANCE
Acid-Base Balance.
Blood Gases, pH and Buffer system
Department of Biochemistry
Renal Handling of H+ concentration
Acid base balance Dr. S. Parthasarathy MD., DA., DNB, MD (Acu), Dip. Diabetes Diploma in Software based statistics PhD ( physiology), IDRA , FICA.
Presentation transcript:

REGULATION OF ACID BASE BALANCE: It means regulation of pH of body fluids. pH = -log [H+] pH of arterial blood = 7.4 pH of venous blood = 7.35 (because of dissolved CO2) Why it is important to regulate pH??

It is important to regulate pH because enzymes in body need optimal pH & when pH changes, there is marked effect on activity of enzymes. When pH is >7.45, it is ALKALOSIS When pH is <7.35, it is ACIDOSIS In which range of pH, person can survive?

Survival range: (very narrow range) pH of body fluids depend upon BUFFERS in body fluids. What is a BUFFER SYSTEM?

Buffer system is a solution which minimize or resist change in pH (IT CANNOT PREVENT THE CHANGE!!!) A buffer system consists of a weak acid & its salt (mostly) or a weak alkali & its salt, e. g, HCO 3 - buffer: salt is NaHCO 3 & weak acid is H 2 CO 3 It may be KHCO 3 salt…..but in plasma & ECF main cation is Na + Another e. g, is PO buffer: salt is Na 2 HPO 4 & acid is NaH 2 PO 4 ACID: Which can donate H+ BASE: Which can accept H+

BUFFERS: 1) BLOOD (Plasma & RBCs) 2) IN ISF 3) IN ICF

BLOOD BUFFERS: 1) HCO3 BUFFER 2) PO4 BUFFER 3) PROTEIN BUFFER 4) Hb BUFFER IN RBCs

HCO3 BUFFER IN BLOOD: It consist of HCO3 (salt) & acid (H2CO3 which is dissolved CO2). HCO3 means NaHCO3 because Na+ is main cation in plasma. Ratio = salt/acid = NaHCO3/H2CO3 = 20/1 pka of this buffer system (HCO3) = log20 = = 7.4 pka = -log of dissociation constant of acid

HENDERSON HASSEL BALCH EQUATION: pH = pka + log [salt / acid] pka is –log of dissociation constant of acid HCO3 buffer system: for HCO3-, pka = 6.1 so log salt or HCO3 Acid = log 24mEq or mM/L 1.2mEq or mM/L = log 20 = = 7.4 When ratio between salt & acid is 20, pH will be 7.4.

PO4 BUFFER IN BLOOD: SALT= Na2HPO4 ACID= NaH2PO4 Ratio=salt/acid = 4/1 Pka of H3PO4 = 6.8

PROTEIN BUFFER IN BLOOD: SALT=Na-Proteinate ACID=Acid Protein or H-Protein

Hb BUFFER IN RBCs Cation in RBCs = K+ For Hb buffer, salt = K-Hemoglobinate Acid = Acid Hemoglobin=HHb Hb is very important buffer in blood

BUFFERS IN ISF: HCO3 PO4 Weak protein buffer

BUFFER IN ICF: Main buffer in ICF is protein buffer. Buffering power of a buffer depends on 2 factors: 1) conc. of buffer (quantitative) 2) pka (qualitative) If conc. is greater, stronger will be the buffer. If pka of buffer is near to pH of blood, stronger will be that buffer. If we compare HCO3 & PO4 buffer, quantitatively powerful is HCO3 buffer. Its conc. is 10x more than PO4 buffer. Qualitatively, PO4 buffer is more powerful, as 6.8 is closer to 7.4 than 6.1.

Sources of H + or acid in the body: 1) OXIDATION OF CARBON CONTAINING COMPOUNDS: Gives rise to CO2 (Volatile acid). During exercise production of CO2 increases very much.

2) FORMATION OF NON-VOLATILE OR ORGANIC ACIDS DURING METABOLISM OF CHO, FATS & PROT. -Most of these acids are further oxidized to form CO2 & H2O, but their level increase in the blood when there is increased rate of metabolism. -In hypoxia  increased production of these acids. (to provide energy, rapid metabolism) -Certain drugs & disorders can increase their production. -These acids are PYRUVIC ACID, LACTIC ACID, ACETO- ACETIC ACID & BETA HYDROXY BUTYRIC ACID.

3) FORMATION OF H 2 SO 4 : When S containing compounds (like Cysteine & Methionine) are oxidized, H2SO4 is produced.

4) FORMATION OF H3PO4: When phospho-esters, phosphatides. Phospho-proteins & nucleo-proteins are hydrolyzed in the body.

4) Small amount of some acids are INGESTED BY MOUTH: Like NH4Cl in cough syrup (noshadir)  mild acidosis.

BUFFERING MECHANISMS IN THE BODY: (2 TYPES) 1) PHYSICO-CHEMICAL BUFFERING 2) PHYSIOLOGICAL BUFFERING

PHYSICO-CHEMICAL BUFFERING: Most immediate buffering. (when an acid or alkali is added to body fluids, it is the 1 st line of defense against disturbance of acid base balance. A)PHYSICO-CHEMICAL BUFFERING OF CO2/VOLATILE ACID: CO2 is transported as HCO3 & in free form. From tissues, CO2  RBCs. In RBCs, CO2 + H2O  H2CO3 H2CO3 (unstable)  H + HCO3 H ion + Hb  HHb (buffered by Hb to form acid-Hb).

At tissue level, deoxy Hb is available. Deoxy- Hb can bind much more H than oxy-Hb (already acidic). HCO3 diffuses out into plasma & from plasma, Cl diffuse in to maintain electrical balance. This is HCO3-Cl SHIFT OR HAMBERGER’S SHIFT.

Some CO2 combine with amino group of Hb to form CARBAMINO-Hb. Some CO2 binds with amino group of plasma proteins to form CARBAMINO-PROTEINS.

Cl Hb H HCO3 H2CO3 CO2 + H20 (CA) CO2 carbamino-proteins RBC carbamino-Hb

B) PHYSICO-CHEMICAL BUFFERING OF ORGANIC/NON-VOLATILE ACIDS: Carried out by various chemical buffers in body fluids like HCO3 & PO4 buffers. e.g in body there is production of H3PO4, so NaHCO3 will buffer it & we get Na2HPO4 + H2CO3. H3PO4 + NaHCO3  Na2HPO4 + H2CO3. (strong acid) (salt) (weak acid)

CONCLUSION: In case of volatile acids buffering: Hb & plasma proteins play a role. Incase of organic/non-volatile acid buffering: NaHCO3 is utilized, which must be replenished & body must get rid of acid anion/salt & the weak acid; H2CO3.

ROLE OF PHYSIOLOGICAL BUFFERING: It is actually to deal with end product of physico-chemical buffering. In physiological buffering, there is role of respiratory system & renal system.

ROLE OF RESPIRATORY SYSTEM: It removes CO2 from the body. Also removes dissolved CO2 (i-e H2CO3). When RBC goes to lung capillaries, blood becomes oxygenated. O2 enters the RBC. O2 binds with Hb to form oxy-Hb (strong acid), which cannot hold H). There is reverse HCO3-Cl shift (lung level). From plasma HCO3 move into RBC & Cl move in reverse direction. CO2 from Carbamino Hb also comes out. In RBC there is reverse reaction. H + HCO3  H2CO3  CO2 + H2O. CO2  alveoli  expired out.

As a result of physiological buffering, Hb & plasma proteins are again available to buffer CO2 or H. (RECYCLING) CO2 is very strong stimulant of respiratory centre. Buffering by respiratory system takes minutes to hours. Buffering power of resp. system is 1 to twice more powerful, as compared to buffering by chemical buffers in body fluids (HCO3, PO4 buffers etc).

ROLE OF RENAL SYSTEM: Kidneys regenerate HCO3. There is reabsorption of Na & Cl ions when required. Acid anions or salts are excreted in urine. There is secretion of H & Ammonia by the kidney.

3) METABOLIC ACIDOSIS: Due to increase H ion production in body, conc of HCO3 decreases. So salt/acid = HCO3/PCO2 = decreased ratio  decreased pH, because of less HCO3 in arterial blood. So pH decreases to produce metabolic acidosis.

CAUSES OF METAB ACIDOSIS: 1) FAILURE TO EXCRETE normally produced metab acids in urine. In chronic renal failure, kidneys cannot excrete normally produced metab acids. 2) INCREASED PRODUCTION OF METAB/ORGANIC ACIDS: e.g uncontrolled DM, Severe hypoxia (lactic acidosis). 3) LOSS OF ALKALINE FLUID FROM BODY:e.g Severe diarrhoea, intestinal fistula & vomiting of intestinal contents.

4) HYPERKALEMIA: In hyperkalemia, body tends to excrete K ion, instead of H ion. So H ion is conserved  acidosis. (IN HYPERKALEMIA THERE IS ACIDOSIS). 5) CARBONIC ANHYDRASE INHIBITORS: e.g Acetazolamide. H ions are not secreted & no reabs of HCO3  Metabolic acidosis.

COMPENSATION OF MET ACIDOSIS: 1) Various buffers in body fluids, buffer the excess of H ion,e.g, HCO3 buffer, PO4 buffer & protein buffer. 2) Resp system: Because of increased H ion conc.  hyperventillation  loss of CO2  less PCO2  Ratio will increase back to normal & pH will increase back to normal. *In compensated cases of metab acidosis, there is some resp alkalosis to decrease PCO2 because of hyperventillation. 3) Renal compensation: Kidney secretes H ion in large amount. There is increased NH3 secretion. There is increased HCO3 reabsorption or regeneration. When there is more HCO3 reabsorption, Cl is lost in urine.

4) METABOLIC ALKALOSIS: There is more HCO3 conc. in arterial blood, so ratio between salt & acid increases, so pH will increase to produce metabolic alkalosis. CAUSES: 1) Ingestion of large amount of alkali,e.g, in gastritis & peptic ulcer as a treatment. 2) Vomiting of gastric contents, due to loss of acids from stomach in large amounts. 3) Increase of Aldosterone: Increased Na reabs which is coupled with counter transport of K & also H, so when there is increased aldosterone  hypokalemia & alkalosis.

EFFECTS OF ACIDOSIS & ALKALOSIS ON BODY: EFFECT OF ACIDOSIS: When pH decreases  CNS is depressed  patient becomes disoriented, drowsy & comatosed in severe cases, e.g, diabetic coma of ketoacidosis  Kussmal breathing (rapid & deep breathing) with ketotic breath.

EFFECT OF ALKALOSIS: When ionic calcium decreases  hypocalcemia  tetany (hyperexcitability of nerves)  carpopedal & laryngeal spasm, convulsions, paresthesias due to involvement of sensory nerves.

CLINICAL EVALUATION OF ACID BASE BALANCE: -1) MEASUREMENT OF ARTERIAL pH: (1 st parameter) = ) MEASUREMENT OF ARTERIAL PCO2:= 40mmHg -3) MEASUREMENT OF ALKALI RESERVE: (HCO3) = 24mEq/L -4) MEASUREMENT OF BUFFER BASE: -5) ANION GAP MEASUREMENT:

CLINICAL EVALUATION OF ACID BASE BALANCE: MEASUREMENT OF BUFFER BASE: It is conc of anion component of buffers in body fluid. It includes HCO3 conc & conc of protein anions. Normally buffer base is 48mEq/L. Out of this, HCO3 is 24 & remaining is Hb (mainly protein anions). We can also evaluate acid base balance by acid base nomograms. It also determines type of acid base disturbance & its severity.

ANION GAP MEASUREMENT: It is the difference between conc of cations other than Na & conc of anions other than HCO3 & Cl.

ANION GAP MEASUREMENT: [ANIONS] = [CATIONS] [MEASURED ANIONS] + [UNMEASURED ANIONS] = [MEASURED CATIONS] + [UNMEASURED CATIONS] [Cl-] + [HCO3-] + [UNMEASURED ANIONS] = [Na+] + [UNMEASURED CATIONS] [UNMEASURED ANIONS – UNMEASURED CATIONS = [Na+] – [Cl- + HCO3-]

ANIONS OTHER THAN HCO3 & Cl: Protein anions, PO4, SO4 & LACTATE. Difference between these 2 concs is called ANION GAP. Anion gap is increased, when conc of cations decreases or anions are increased,e.g, incresed albumin, SO4,PO4,LACTATE & PYRUVATE.

ANION GAP IS INCREASED IN: Metabolic acidosis due to ketoacidosis & lactacidosis like in uncontrolled DM (ketoacidosis) & in severe hypoxia (lactacidosis). ANION GAP IS NOT INCREASED IN: Hyperchloremic acidosis, which may be due to CA Inhibitors (acetazolamide) or ingestion of large amount of NH4Cl.

1) RESPIRATORY ACIDOSIS: Here PCO2 in arterial blood increases, ratio between salt & acid falls, so pH decreases to produce resp acidosis. CAUSES: Decreased rate of pulm vent. due to damage to resp centre or resp centre depression by drugs like morphine or disease of resp centre. Resp muscle paralysis, airway obstruction, pulm fibrosis, pneumothorax & pleural effusion. In resp acidosis, cause is in resp system.

COMPENSATORY MECHANISMS: (from outside resp system) 1) Various non-HCO3 buffers, take up or buffer H ion to produce HCO3 ion. When there is increased PCO2, there is more H2CO3. So non-HCO3 buffers will take up H ion from H2CO3 & left behind is HCO3.

2) Renal compensation: In renal tubules, there is more H ion secretion & more NH3 secretion. More HCO3 reabsorption or regeneration. More titrable acidity of urine. As a result of renal compensation, HCO3 will increase. Ratio of HCO3/PCO2 conc will increase back to normal  pH will increase back to normal. In compensated cases of resp acidosis, there is some metabolic alkalosis because HCO3 is increased.

2) RESPIRATORY ALKALOSIS: Here PCO2 in arterial blood decreases. So ratio between salt/acid conc is increased, so pH increases  resp alkalosis. CAUSES: Hyper ventilation: Voluntary Hysteria / psychoneurosis Resp centre stimulation in salicylate poisoning & nikethamide (resp stimulant) At high altitude.

COMPENSATION OF RESP ALKALOSIS: 1) By protons donated by various buffers in body fluids (some compensation). 2) Main compensation is through kidneys. In kidney, no H ion secretion, no NH3 secretion, HCO3 is not reabsorbed, it is lost in urine in large amount. H ions are produced in tubular cells which are added to ECF. So urine will be highly alkaline.