David Luebke 1 5/9/2015 CS 332: Algorithms Graph Algorithms.

Slides:



Advertisements
Similar presentations
Comp 122, Fall 2004 Elementary Graph Algorithms. graphs Lin / Devi Comp 122, Fall 2004 Graphs  Graph G = (V, E) »V = set of vertices »E = set of.
Advertisements

Tirgul 7 Review of graphs Graph algorithms: –DFS –Properties of DFS –Topological sort.
Elementary Graph Algorithms Depth-first search.Topological Sort. Strongly connected components. Chapter 22 CLRS.
Graph Traversals. For solving most problems on graphs –Need to systematically visit all the vertices and edges of a graph Two major traversals –Breadth-First.
More Graphs COL 106 Slides from Naveen. Some Terminology for Graph Search A vertex is white if it is undiscovered A vertex is gray if it has been discovered.
Graphs Searching. Graph Searching Given: a graph G = (V, E), directed or undirected Goal: methodically explore every vertex and every edge Ultimately:
Zhengjin Graphs: Adjacency Matrix ● Example: a d bc A ?? 4.
Breadth First Search. Two standard ways to represent a graph –Adjacency lists, –Adjacency Matrix Applicable to directed and undirected graphs. Adjacency.
Graph Searching (Graph Traversal) Algorithm Design and Analysis Week 8 Bibliography: [CLRS] – chap 22.2 –
CS 3343: Analysis of Algorithms Lecture 24: Graph searching, Topological sort.
1 Graph Programming Gordon College. 2 Graph Basics A graph G = (V, E) –V = set of vertices, E = set of edges –Dense graph: |E|  |V| 2 ; Sparse graph:
Graph Traversals Visit vertices of a graph G to determine some property: Is G connected? Is there a path from vertex a to vertex b? Does G have a cycle?
Graph traversals / cutler1 Graph traversals Breadth first search Depth first search.
Tirgul 11 DFS Properties of DFS Topological sort.
David Luebke 1 5/20/2015 CS 332: Algorithms Graph Algorithms.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2001 Makeup Lecture Chapter 23: Graph Algorithms Depth-First SearchBreadth-First.
1 Data Structures DFS, Topological Sort Dana Shapira.
Lecture 14: Graph Algorithms Shang-Hua Teng. Undirected Graphs A graph G = (V, E) –V: vertices –E : edges, unordered pairs of vertices from V  V –(u,v)
Lecture 15: Depth First Search Shang-Hua Teng. Graphs G= (V,E) B E C F D A B E C F D A Directed Graph (digraph) –Degree: in/out Undirected Graph –Adjacency.
1 7/2/2015 ITCS 6114 Graph Algorithms. 2 7/2/2015 Graphs ● A graph G = (V, E) ■ V = set of vertices ■ E = set of edges = subset of V  V ■ Thus |E| =
1 7/3/2015 ITCS 6114 Graph Algorithms. 2 7/3/2015 Depth-First Search ● Depth-first search is another strategy for exploring a graph ■ Explore “deeper”
David Luebke 1 8/7/2015 CS 332: Algorithms Graph Algorithms.
Review of Graphs A graph is composed of edges E and vertices V that link the nodes together. A graph G is often denoted G=(V,E) where V is the set of vertices.
November 6, Algorithms and Data Structures Lecture XI Simonas Šaltenis Aalborg University
David Luebke 1 9/15/2015 CS 332: Algorithms Topological Sort Minimum Spanning Trees.
David Luebke 1 10/1/2015 CS 332: Algorithms Topological Sort Minimum Spanning Tree.
COSC 3101A - Design and Analysis of Algorithms 10
Elementary Graph Algorithms CSc 4520/6520 Fall 2013 Slides adapted from David Luebke, University of Virginia and David Plaisted, University of North Carolina.
Spring 2015 Lecture 10: Elementary Graph Algorithms
Sept Elementary Graph Algorithms Graph representation Graph traversal -Breadth-first search -Depth-first search Parenthesis theorem.
Elementary Graph Algorithms CLRS Chapter 22. Graph A graph is a structure that consists of a set of vertices and a set of edges between pairs of vertices.
CSC 413/513: Intro to Algorithms Graph Algorithms DFS.
Lecture 11 Algorithm Analysis Arne Kutzner Hanyang University / Seoul Korea.
1 Chapter 22 Elementary Graph Algorithms. 2 Introduction G=(V, E) –V = vertex set –E = edge set Graph representation –Adjacency list –Adjacency matrix.
Elementary Graph Algorithms Many of the slides are from Prof. Plaisted’s resources at University of North Carolina at Chapel Hill.
CSC 201: Design and Analysis of Algorithms Lecture # 18 Graph Algorithms Mudasser Naseer 1 12/16/2015.
CSC 413/513: Intro to Algorithms Graph Algorithms.
Graph Algorithms Searching. Review: Graphs ● A graph G = (V, E) ■ V = set of vertices, E = set of edges ■ Dense graph: |E|  |V| 2 ; Sparse graph: |E|
Chapter 22: Elementary Graph Algorithms
Analysis of Algorithms CS 477/677 Instructor: Monica Nicolescu Lecture 20.
David Luebke 1 1/6/2016 CS 332: Algorithms Graph Algorithms.
Mudasser Naseer 1 1/9/2016 CS 201: Design and Analysis of Algorithms Lecture # 17 Elementary Graph Algorithms (CH # 22)
CS 2133: Algorithms Intro to Graph Algorithms (Slides created by David Luebke)
David Luebke 1 1/25/2016 CSE 207: Algorithms Graph Algorithms.
Liaquat Majeed Sheikh 1 1/25/2016 Graph Algorithms.
Graphs & Paths Presentation : Part II. Graph representation Given graph G = (V, E). May be either directed or undirected. Two common ways to represent.
Shahed University Dr. Shahriar Bijani May  A path is a sequence of vertices P = (v 0, v 1, …, v k ) such that, for 1 ≤ i ≤ k, edge (v i – 1, v.
ALGORITHMS THIRD YEAR BANHA UNIVERSITY FACULTY OF COMPUTERS AND INFORMATIC Lecture nine Dr. Hamdy M. Mousa.
November 19, Algorithms and Data Structures Lecture XI Simonas Šaltenis Nykredit Center for Database Research Aalborg University
G RAPH A LGORITHMS Dr. Tanzima Hashem Assistant Professor CSE, BUET.
CSC317 1 At the same time: Breadth-first search tree: If node v is discovered after u then edge uv is added to the tree. We say that u is a predecessor.
Chapter 22: Elementary Graph Algorithms Overview: Definition of a graph Representation of graphs adjacency list matrix Elementary search algorithms breadth-first.
CS 3343: Analysis of Algorithms Lecture 24: Graph searching, Topological sort.
64 Algorithms analysis and design BY Lecturer: Aisha Dawood.
CS 201: Design and Analysis of Algorithms
Elementary Graph Algorithms
Chapter 22 Elementary Graph Algorithms
Topological Sort Minimum Spanning Tree
Depth-First Search Depth-first search is a strategy for exploring a graph Explore “deeper” in the graph whenever possible Edges are explored out of the.
CSC 413/513: Intro to Algorithms
CS200: Algorithm Analysis
Many slides here are based on E. Demaine , D. Luebke slides
Elementary Graph Algorithms
CS 3343: Analysis of Algorithms
Graphs A graph G = (V, E) V = set of vertices, E = set of edges
Intro to Graph Algorithms (Slides originally created by David Luebke)
Graphs Chapter 15 explain graph-based algorithms Graph definitions
CS6045: Advanced Algorithms
Graph Algorithms "A charlatan makes obscure what is clear; a thinker makes clear what is obscure. " - Hugh Kingsmill CLRS, Sections 22.2 – 22.4.
CSC 325: Algorithms Graph Algorithms David Luebke /24/2019.
Presentation transcript:

David Luebke 1 5/9/2015 CS 332: Algorithms Graph Algorithms

David Luebke 2 5/9/2015 Administrative ● Test postponed to Friday ● Homework: ■ Turned in last night by midnight: full credit ■ Turned in tonight by midnight: 1 day late, 10% off ■ Turned in tomorrow night: 2 days late, 30% off ■ Extra credit lateness measured separately

David Luebke 3 5/9/2015 Review: Graphs ● A graph G = (V, E) ■ V = set of vertices, E = set of edges ■ Dense graph: |E|  |V| 2 ; Sparse graph: |E|  |V| ■ Undirected graph: ○ Edge (u,v) = edge (v,u) ○ No self-loops ■ Directed graph: ○ Edge (u,v) goes from vertex u to vertex v, notated u  v ■ A weighted graph associates weights with either the edges or the vertices

David Luebke 4 5/9/2015 Review: Representing Graphs ● Assume V = {1, 2, …, n} ● An adjacency matrix represents the graph as a n x n matrix A: ■ A[i, j] = 1 if edge (i, j)  E (or weight of edge) = 0 if edge (i, j)  E ■ Storage requirements: O(V 2 ) ○ A dense representation ■ But, can be very efficient for small graphs ○ Especially if store just one bit/edge ○ Undirected graph: only need one diagonal of matrix

David Luebke 5 5/9/2015 Review: Graph Searching ● Given: a graph G = (V, E), directed or undirected ● Goal: methodically explore every vertex and every edge ● Ultimately: build a tree on the graph ■ Pick a vertex as the root ■ Choose certain edges to produce a tree ■ Note: might also build a forest if graph is not connected

David Luebke 6 5/9/2015 Review: Breadth-First Search ● “Explore” a graph, turning it into a tree ■ One vertex at a time ■ Expand frontier of explored vertices across the breadth of the frontier ● Builds a tree over the graph ■ Pick a source vertex to be the root ■ Find (“discover”) its children, then their children, etc.

David Luebke 7 5/9/2015 Review: Breadth-First Search ● Again will associate vertex “colors” to guide the algorithm ■ White vertices have not been discovered ○ All vertices start out white ■ Grey vertices are discovered but not fully explored ○ They may be adjacent to white vertices ■ Black vertices are discovered and fully explored ○ They are adjacent only to black and gray vertices ● Explore vertices by scanning adjacency list of grey vertices

David Luebke 8 5/9/2015 Review: Breadth-First Search BFS(G, s) { initialize vertices; Q = {s};// Q is a queue (duh); initialize to s while (Q not empty) { u = RemoveTop(Q); for each v  u->adj { if (v->color == WHITE) v->color = GREY; v->d = u->d + 1; v->p = u; Enqueue(Q, v); } u->color = BLACK; } What does v->p represent? What does v->d represent?

David Luebke 9 5/9/2015 Breadth-First Search: Example         rstu vwxy

David Luebke 10 5/9/2015 Breadth-First Search: Example   0      rstu vwxy s Q:

David Luebke 11 5/9/2015 Breadth-First Search: Example 1  0 1     rstu vwxy w Q: r

David Luebke 12 5/9/2015 Breadth-First Search: Example 1    rstu vwxy r Q: tx

David Luebke 13 5/9/2015 Breadth-First Search: Example   rstu vwxy Q: txv

David Luebke 14 5/9/2015 Breadth-First Search: Example  rstu vwxy Q: xvu

David Luebke 15 5/9/2015 Breadth-First Search: Example rstu vwxy Q: vuy

David Luebke 16 5/9/2015 Breadth-First Search: Example rstu vwxy Q: uy

David Luebke 17 5/9/2015 Breadth-First Search: Example rstu vwxy Q: y

David Luebke 18 5/9/2015 Breadth-First Search: Example rstu vwxy Q: Ø

David Luebke 19 5/9/2015 BFS: The Code Again BFS(G, s) { initialize vertices; Q = {s}; while (Q not empty) { u = RemoveTop(Q); for each v  u->adj { if (v->color == WHITE) v->color = GREY; v->d = u->d + 1; v->p = u; Enqueue(Q, v); } u->color = BLACK; } What will be the running time? Touch every vertex: O(V) u = every vertex, but only once (Why?) So v = every vertex that appears in some other vert’s adjacency list Total running time: O(V+E)

David Luebke 20 5/9/2015 BFS: The Code Again BFS(G, s) { initialize vertices; Q = {s}; while (Q not empty) { u = RemoveTop(Q); for each v  u->adj { if (v->color == WHITE) v->color = GREY; v->d = u->d + 1; v->p = u; Enqueue(Q, v); } u->color = BLACK; } What will be the storage cost in addition to storing the graph? Total space used: O(max(degree(v))) = O(E)

David Luebke 21 5/9/2015 Breadth-First Search: Properties ● BFS calculates the shortest-path distance to the source node ■ Shortest-path distance  (s,v) = minimum number of edges from s to v, or  if v not reachable from s ■ Proof given in the book (p ) ● BFS builds breadth-first tree, in which paths to root represent shortest paths in G ■ Thus can use BFS to calculate shortest path from one vertex to another in O(V+E) time

David Luebke 22 5/9/2015 Depth-First Search ● Depth-first search is another strategy for exploring a graph ■ Explore “deeper” in the graph whenever possible ■ Edges are explored out of the most recently discovered vertex v that still has unexplored edges ■ When all of v’s edges have been explored, backtrack to the vertex from which v was discovered

David Luebke 23 5/9/2015 Depth-First Search ● Vertices initially colored white ● Then colored gray when discovered ● Then black when finished

David Luebke 24 5/9/2015 Depth-First Search: The Code DFS(G) { for each vertex u  G->V { u->color = WHITE; } time = 0; for each vertex u  G->V { if (u->color == WHITE) DFS_Visit(u); } DFS_Visit(u) { u->color = GREY; time = time+1; u->d = time; for each v  u->Adj[] { if (v->color == WHITE) DFS_Visit(v); } u->color = BLACK; time = time+1; u->f = time; }

David Luebke 25 5/9/2015 Depth-First Search: The Code DFS(G) { for each vertex u  G->V { u->color = WHITE; } time = 0; for each vertex u  G->V { if (u->color == WHITE) DFS_Visit(u); } DFS_Visit(u) { u->color = GREY; time = time+1; u->d = time; for each v  u->Adj[] { if (v->color == WHITE) DFS_Visit(v); } u->color = BLACK; time = time+1; u->f = time; } What does u->d represent?

David Luebke 26 5/9/2015 Depth-First Search: The Code DFS(G) { for each vertex u  G->V { u->color = WHITE; } time = 0; for each vertex u  G->V { if (u->color == WHITE) DFS_Visit(u); } DFS_Visit(u) { u->color = GREY; time = time+1; u->d = time; for each v  u->Adj[] { if (v->color == WHITE) DFS_Visit(v); } u->color = BLACK; time = time+1; u->f = time; } What does u->f represent?

David Luebke 27 5/9/2015 Depth-First Search: The Code DFS(G) { for each vertex u  G->V { u->color = WHITE; } time = 0; for each vertex u  G->V { if (u->color == WHITE) DFS_Visit(u); } DFS_Visit(u) { u->color = GREY; time = time+1; u->d = time; for each v  u->Adj[] { if (v->color == WHITE) DFS_Visit(v); } u->color = BLACK; time = time+1; u->f = time; } Will all vertices eventually be colored black?

David Luebke 28 5/9/2015 Depth-First Search: The Code DFS(G) { for each vertex u  G->V { u->color = WHITE; } time = 0; for each vertex u  G->V { if (u->color == WHITE) DFS_Visit(u); } DFS_Visit(u) { u->color = GREY; time = time+1; u->d = time; for each v  u->Adj[] { if (v->color == WHITE) DFS_Visit(v); } u->color = BLACK; time = time+1; u->f = time; } What will be the running time?

David Luebke 29 5/9/2015 Depth-First Search: The Code DFS(G) { for each vertex u  G->V { u->color = WHITE; } time = 0; for each vertex u  G->V { if (u->color == WHITE) DFS_Visit(u); } DFS_Visit(u) { u->color = GREY; time = time+1; u->d = time; for each v  u->Adj[] { if (v->color == WHITE) DFS_Visit(v); } u->color = BLACK; time = time+1; u->f = time; } Running time: O(n 2 ) because call DFS_Visit on each vertex, and the loop over Adj[] can run as many as |V| times

David Luebke 30 5/9/2015 Depth-First Search: The Code DFS(G) { for each vertex u  G->V { u->color = WHITE; } time = 0; for each vertex u  G->V { if (u->color == WHITE) DFS_Visit(u); } DFS_Visit(u) { u->color = GREY; time = time+1; u->d = time; for each v  u->Adj[] { if (v->color == WHITE) DFS_Visit(v); } u->color = BLACK; time = time+1; u->f = time; } BUT, there is actually a tighter bound. How many times will DFS_Visit() actually be called?

David Luebke 31 5/9/2015 Depth-First Search: The Code DFS(G) { for each vertex u  G->V { u->color = WHITE; } time = 0; for each vertex u  G->V { if (u->color == WHITE) DFS_Visit(u); } DFS_Visit(u) { u->color = GREY; time = time+1; u->d = time; for each v  u->Adj[] { if (v->color == WHITE) DFS_Visit(v); } u->color = BLACK; time = time+1; u->f = time; } So, running time of DFS = O(V+E)

David Luebke 32 5/9/2015 Depth-First Sort Analysis ● This running time argument is an informal example of amortized analysis ■ “Charge” the exploration of edge to the edge: ○ Each loop in DFS_Visit can be attributed to an edge in the graph ○ Runs once/edge if directed graph, twice if undirected ○ Thus loop will run in O(E) time, algorithm O(V+E)  Considered linear for graph, b/c adj list requires O(V+E) storage ■ Important to be comfortable with this kind of reasoning and analysis

David Luebke 33 5/9/2015 DFS Example source vertex

David Luebke 34 5/9/2015 DFS Example 1 | | | | | | | | source vertex d f

David Luebke 35 5/9/2015 DFS Example 1 | | | | | | 2 | | source vertex d f

David Luebke 36 5/9/2015 DFS Example 1 | | | | |3 | 2 | | source vertex d f

David Luebke 37 5/9/2015 DFS Example 1 | | | | |3 | 4 2 | | source vertex d f

David Luebke 38 5/9/2015 DFS Example 1 | | | |5 |3 | 4 2 | | source vertex d f

David Luebke 39 5/9/2015 DFS Example 1 | | | |5 | 63 | 4 2 | | source vertex d f

David Luebke 40 5/9/2015 DFS Example 1 |8 | | |5 | 63 | 4 2 | 7 | source vertex d f

David Luebke 41 5/9/2015 DFS Example 1 |8 | | |5 | 63 | 4 2 | 7 | source vertex d f

David Luebke 42 5/9/2015 DFS Example 1 |8 | | |5 | 63 | 4 2 | 79 | source vertex d f What is the structure of the grey vertices? What do they represent?

David Luebke 43 5/9/2015 DFS Example 1 |8 | | |5 | 63 | 4 2 | 79 |10 source vertex d f

David Luebke 44 5/9/2015 DFS Example 1 |8 |11 | |5 | 63 | 4 2 | 79 |10 source vertex d f

David Luebke 45 5/9/2015 DFS Example 1 |128 |11 | |5 | 63 | 4 2 | 79 |10 source vertex d f

David Luebke 46 5/9/2015 DFS Example 1 |128 |1113| |5 | 63 | 4 2 | 79 |10 source vertex d f

David Luebke 47 5/9/2015 DFS Example 1 |128 |1113| 14|5 | 63 | 4 2 | 79 |10 source vertex d f

David Luebke 48 5/9/2015 DFS Example 1 |128 |1113| 14|155 | 63 | 4 2 | 79 |10 source vertex d f

David Luebke 49 5/9/2015 DFS Example 1 |128 |1113|16 14|155 | 63 | 4 2 | 79 |10 source vertex d f

David Luebke 50 5/9/2015 DFS: Kinds of edges ● DFS introduces an important distinction among edges in the original graph: ■ Tree edge: encounter new (white) vertex ○ The tree edges form a spanning forest ○ Can tree edges form cycles? Why or why not?

David Luebke 51 5/9/2015 DFS Example 1 |128 |1113|16 14|155 | 63 | 4 2 | 79 |10 source vertex d f Tree edges

David Luebke 52 5/9/2015 DFS: Kinds of edges ● DFS introduces an important distinction among edges in the original graph: ■ Tree edge: encounter new (white) vertex ■ Back edge: from descendent to ancestor ○ Encounter a grey vertex (grey to grey)

David Luebke 53 5/9/2015 DFS Example 1 |128 |1113|16 14|155 | 63 | 4 2 | 79 |10 source vertex d f Tree edgesBack edges

David Luebke 54 5/9/2015 DFS: Kinds of edges ● DFS introduces an important distinction among edges in the original graph: ■ Tree edge: encounter new (white) vertex ■ Back edge: from descendent to ancestor ■ Forward edge: from ancestor to descendent ○ Not a tree edge, though ○ From grey node to black node

David Luebke 55 5/9/2015 DFS Example 1 |128 |1113|16 14|155 | 63 | 4 2 | 79 |10 source vertex d f Tree edgesBack edgesForward edges

David Luebke 56 5/9/2015 DFS: Kinds of edges ● DFS introduces an important distinction among edges in the original graph: ■ Tree edge: encounter new (white) vertex ■ Back edge: from descendent to ancestor ■ Forward edge: from ancestor to descendent ■ Cross edge: between a tree or subtrees ○ From a grey node to a black node

David Luebke 57 5/9/2015 DFS Example 1 |128 |1113|16 14|155 | 63 | 4 2 | 79 |10 source vertex d f Tree edgesBack edgesForward edgesCross edges

David Luebke 58 5/9/2015 DFS: Kinds of edges ● DFS introduces an important distinction among edges in the original graph: ■ Tree edge: encounter new (white) vertex ■ Back edge: from descendent to ancestor ■ Forward edge: from ancestor to descendent ■ Cross edge: between a tree or subtrees ● Note: tree & back edges are important; most algorithms don’t distinguish forward & cross

David Luebke 59 5/9/2015 DFS: Kinds Of Edges ● Thm 23.9: If G is undirected, a DFS produces only tree and back edges ● Proof by contradiction: ■ Assume there’s a forward edge ○ But F? edge must actually be a back edge (why?) source F?

David Luebke 60 5/9/2015 DFS: Kinds Of Edges ● Thm 23.9: If G is undirected, a DFS produces only tree and back edges ● Proof by contradiction: ■ Assume there’s a cross edge ○ But C? edge cannot be cross: ○ must be explored from one of the vertices it connects, becoming a tree vertex, before other vertex is explored ○ So in fact the picture is wrong…both lower tree edges cannot in fact be tree edges source C?

David Luebke 61 5/9/2015 DFS And Graph Cycles ● Thm: An undirected graph is acyclic iff a DFS yields no back edges ■ If acyclic, no back edges (because a back edge implies a cycle ■ If no back edges, acyclic ○ No back edges implies only tree edges (Why?) ○ Only tree edges implies we have a tree or a forest ○ Which by definition is acyclic ● Thus, can run DFS to find whether a graph has a cycle

David Luebke 62 5/9/2015 DFS And Cycles ● How would you modify the code to detect cycles? DFS(G) { for each vertex u  G->V { u->color = WHITE; } time = 0; for each vertex u  G->V { if (u->color == WHITE) DFS_Visit(u); } DFS_Visit(u) { u->color = GREY; time = time+1; u->d = time; for each v  u->Adj[] { if (v->color == WHITE) DFS_Visit(v); } u->color = BLACK; time = time+1; u->f = time; }

David Luebke 63 5/9/2015 DFS And Cycles ● What will be the running time? DFS(G) { for each vertex u  G->V { u->color = WHITE; } time = 0; for each vertex u  G->V { if (u->color == WHITE) DFS_Visit(u); } DFS_Visit(u) { u->color = GREY; time = time+1; u->d = time; for each v  u->Adj[] { if (v->color == WHITE) DFS_Visit(v); } u->color = BLACK; time = time+1; u->f = time; }

David Luebke 64 5/9/2015 DFS And Cycles ● What will be the running time? ● A: O(V+E) ● We can actually determine if cycles exist in O(V) time: ■ In an undirected acyclic forest, |E|  |V| - 1 ■ So count the edges: if ever see |V| distinct edges, must have seen a back edge along the way