An Interest-Driven Approach to Integrated Unicast and Multicast Routing in MANETs Rolando Menchaca-Mendez J.J. Garcia-Luna-Aceves 280N Seminar: 4/28/2008.

Slides:



Advertisements
Similar presentations
1 A Review of Current Routing Protocols for Ad-Hoc Mobile Wireless Networks By Lei Chen.
Advertisements

Multicasting in Mobile Ad Hoc Networks Ravindra Vaishampayan Department of Computer Science University of California Santa Cruz, CA 95064, U.S.A. Advisor:
Weight based Multicast Routing Protocol for Ad hoc Wireless Networks 學生:陳信皇 教授:陳仁暉.
指導教授:許子衡 教授 報告學生:馬敏修 2010/8/ Introduction 2. Geocast Routing Protocols  2.1 GAMER Overview 3. GAMER Details  3.1 Building the Mesh  3.2 Adaptation.
Network Layer Routing Issues (I). Infrastructure vs. multi-hop Infrastructure networks: Infrastructure networks: ◦ One or several Access-Points (AP) connected.
Improving TCP Performance over Mobile Ad Hoc Networks by Exploiting Cross- Layer Information Awareness Xin Yu Department Of Computer Science New York University,
Self-Organizing Hierarchical Routing for Scalable Ad Hoc Networking David B. Johnson Department of Computer Science Rice University Monarch.
Ranveer Chandra , Kenneth P. Birman Department of Computer Science
MANETs Routing Dr. Raad S. Al-Qassas Department of Computer Science PSUT
Multicasting in Mobile Ad-Hoc Networks (MANET)
An Analysis of the Optimum Node Density for Ad hoc Mobile Networks Elizabeth M. Royer, P. Michael Melliar-Smith and Louise E. Moser Presented by Aki Happonen.
1 Spring Semester 2007, Dept. of Computer Science, Technion Internet Networking recitation #4 Mobile Ad-Hoc Networks AODV Routing.
Effects of Applying Mobility Localization on Source Routing Algorithms for Mobile Ad Hoc Network Hridesh Rajan presented by Metin Tekkalmaz.
Exploiting the Unicast Functionality of the On- Demand Multicast Routing Protocol Sung-Ju Lee, William Su, and Mario Gerla
E-ODMRP: Enhanced ODMRP with Motion Adaptive Refresh Soon Y. Oh, Joon-Sang Park, Mario Gerla Computer Science Dept. UCLA.
ITIS 6010/8010 Wireless Network Security Dr. Weichao Wang.
MIMO-CAST: A CROSS-LAYER AD HOC MULTICAST PROTOCOL USING MIMO RADIOS Soon Y. Oh*, Mario Gerla*, Pengkai Zhao**, Babak Daneshrad** *Computer Science Dept.,
Mobile and Wireless Computing Institute for Computer Science, University of Freiburg Western Australian Interactive Virtual Environments Centre (IVEC)
CS541 Advanced Networking 1 Mobile Ad Hoc Networks (MANETs) Neil Tang 02/02/2009.
Anonymous Gossip: Improving Multicast Reliability in Mobile Ad-Hoc Networks Ranveer Chandra (joint work with Venugopalan Ramasubramanian and Ken Birman)
Towards Scale-Free Routing in MANETs J.J. Garcia-Luna-Aceves, Stephen Dabideen, Rolando Menchcaca- Mendez, Dhananjay Sampath, Brad Smith University of.
CSE679: Multicast and Multimedia r Basics r Addressing r Routing r Hierarchical multicast r QoS multicast.
Ad Hoc Wireless Routing COS 461: Computer Networks
Routing Two papers: Location-Aided Routing (LAR) in mobile ad hoc networks (2000) Ad-hoc On-Demand Distance Vector Routing (1999)
Mobile Ad-hoc Pastry (MADPastry) Niloy Ganguly. Problem of normal DHT in MANET No co-relation between overlay logical hop and physical hop – Low bandwidth,
ENHANCING AND EVALUATION OF AD-HOC ROUTING PROTOCOLS IN VANET.
Itrat Rasool Quadri ST ID COE-543 Wireless and Mobile Networks
AD HOC WIRELESS MUTICAST ROUTING. Multicasting in wired networks In wired networks changes in network topology is rare In wired networks changes in network.
1 Spring Semester 2009, Dept. of Computer Science, Technion Internet Networking recitation #3 Mobile Ad-Hoc Networks AODV Routing.
Mobile Routing protocols MANET
“Intra-Network Routing Scheme using Mobile Agents” by Ajay L. Thakur.
Mobile Adhoc Network: Routing Protocol:AODV
Multicast Routing in Mobile Ad Hoc Networks (MANETs)
Improving QoS Support in Mobile Ad Hoc Networks Agenda Motivations Proposed Framework Packet-level FEC Multipath Routing Simulation Results Conclusions.
Wireless Sensor Networks COE 499 Energy Aware Routing
Presented by Chaitanya Nemallapudi Understanding and Exploiting the Trade-Offs between Broadcasting and Multicasting in Mobile Ad Hoc Networks Lap Kong.
Multicast Routing Algorithms n Multicast routing n Flooding and Spanning Tree n Forward Shortest Path algorithm n Reversed Path Forwarding (RPF) algorithms.
Routing Protocols of On- Demand Dynamic Source Routing (DSR) Ad-Hoc On-Demand Distance Vector (AODV)
Ad Hoc Routing: The AODV and DSR Protocols Speaker : Wilson Lai “Performance Comparison of Two On-Demand Routing Protocols for Ad Hoc Networks”, C. Perkins.
ODMRP (On-Demand Multicast Routing Protocol in Multihop Wireless Mobile Networks ) Sung-Ju Lee William Su Mario Gerla Presented By: Meenakshi Bangad.
Dynamic Source Routing (DSR) Sandeep Gupta M.Tech - WCC.
Fault-Tolerant Papers Broadband Network & Mobile Communication Lab Course: Computer Fault-Tolerant Speaker: 邱朝螢 Date: 2004/4/20.
1 Ad Hoc On-Demand Distance Vector Routing (AODV) Dr. R. B. Patel.
Energy-Efficient Shortest Path Self-Stabilizing Multicast Protocol for Mobile Ad Hoc Networks Ganesh Sridharan
AODV: Introduction Reference: C. E. Perkins, E. M. Royer, and S. R. Das, “Ad hoc On-Demand Distance Vector (AODV) Routing,” Internet Draft, draft-ietf-manet-aodv-08.txt,
KAIS T High-throughput multicast routing metrics in wireless mesh networks Sabyasachi Roy, Dimitrios Koutsonikolas, Saumitra Das, and Y. Charlie Hu ICDCS.
K-Anycast Routing Schemes for Mobile Ad Hoc Networks 指導老師 : 黃鈴玲 教授 學生 : 李京釜.
A Scalable Routing Protocol for Ad Hoc Networks Eric Arnaud Id:
DHT-based unicast for mobile ad hoc networks Thomas Zahn, Jochen Schiller Institute of Computer Science Freie Universitat Berlin 報告 : 羅世豪.
Intro DSR AODV OLSR TRBPF Comp Concl 4/12/03 Jon KolstadAndreas Lundin CS Ad-Hoc Routing in Wireless Mobile Networks DSR AODV OLSR TBRPF.
a/b/g Networks Routing Herbert Rubens Slides taken from UIUC Wireless Networking Group.
Ad Hoc Multicast Routing
SHORT: Self-Healing and Optimizing Routing Techniques for Mobile Ad Hoc Networks Presenter: Sheng-Shih Wang October 30, 2003 Chao Gui and Prasant Mohapatra.
Self-stabilizing energy-efficient multicast for MANETs.
6LoWPAN Ad Hoc On-Demand Distance Vector Routing Introduction Speaker: Wang Song-Ferng Advisor: Dr. Ho-Ting Wu Date: 2014/03/31.
Ad Hoc On-Demand Distance Vector Routing (AODV) ietf
A Multicast Routing Algorithm Using Movement Prediction for Mobile Ad Hoc Networks Huei-Wen Ferng, Ph.D. Assistant Professor Department of Computer Science.
Improving Fault Tolerance in AODV Matthew J. Miller Jungmin So.
Doc.: IEEE /0174r1 Submission Hang Liu, et al. March 2005 Slide 1 A Routing Protocol for WLAN Mesh Hang Liu, Jun Li, Saurabh Mathur {hang.liu,
Reliable Adaptive Lightweight Multicast Protocol Ken Tang, Scalable Network Technologies Katia Obraczka, UC Santa Cruz Sung-Ju Lee, Hewlett-Packard Laboratories.
Author:Zarei.M.;Faez.K. ;Nya.J.M.
Mesh-based Geocast Routing Protocols in an Ad Hoc Network
MZR: A Multicast Protocol based on Zone Routing
Internet Networking recitation #4
ODMRP Enhancement.
任課教授:陳朝鈞 教授 學生:王志嘉、馬敏修
Mobile and Wireless Networking
Routing.
A Routing Protocol for WLAN Mesh
Routing in Mobile Wireless Networks Neil Tang 11/14/2008
Presentation transcript:

An Interest-Driven Approach to Integrated Unicast and Multicast Routing in MANETs Rolando Menchaca-Mendez J.J. Garcia-Luna-Aceves 280N Seminar: 4/28/ Santa Cruz, CA Protocol for Routing in Interest-defined Mesh Enclaves PRIME

Presentation Outline Introduction The Protocol for Routing in Interest-defined Mesh Enclaves (PRIME) –Mesh Activation and Deactivation –Mesh Establishment and Maintenance –Opportunistic Transmission of Mesh Announcements –Enclaves vs. Meshes –Packet Forwarding and Local Repairs –Core Election –Adaptive Strategies Performance Results Conclusions

Introduction MANET applications require point-to-point and many-to- many communication, and very few destinations are such that a large percentage of the nodes in the network have interest in them. These application requirements are in stark contrast with the way in which today's MANET routing protocols operate. –They support either unicast routing or multicast routing –Proactive and on-demand routing protocols for unicasting and multicasting proposed to date are such that the network is flooded frequently This is the case even when the protocols maintain routing information on demand (e.g., AODV and ODMRP)

Introduction The main contribution of this work is to introduce an integrated framework for routing in MANETs. –The same control signaling is used to support unicast and multicast routing, –The distinction between on-demand and proactive signaling for routing is eliminated and interest-driven signaling is used instead. Interest-defined mesh enclaves are established and maintained –Such meshes are connected components of a MANET over which control signaling and data packets for unicast or multicast flows are disseminated.

PRIME: Mesh Activation and Deactivation The first source that becomes active for a given unicast or multicast destination sends its first data packet piggybacked in a mesh-activation request (MR) –A MR contains, among other fields, an horizon threshold and the persistence of the interest –Destinations, relays needed between them, and interested sources remain active for as long as there are active sources in the connected component of the network.

Once a destination becomes active, it starts advertising its existence using mesh announcements (MA). A MA contains the following fields: –Message type –Destination address –Core address unicast destination, core of a multicast group, a flag that indicates that the MA is a partition confirmation request, or a neighbor request –Sequence number –Distance to the destination –Next hop –Membership code mesh member, receiver, both, or regular node; in the case of a unicast flow, the membership code is used to indicate the scope of the dissemination of a MA; namely, flood or restricted to the enclave PRIME: Mesh Establishment and Maintenance

Core a b d c Rg f e Transmission of MA Parent Pointer Receiver Rg forces its parent to join the multicast mesh Node b selects the core as its parent or next hop Rg uses the transmission of d’s MA as an implicit ACK

PRIME: Mesh Establishment and Maintenance Multicast Mesh Mesh composed of braided paths A similar structure would be used to route unicast packets from s to the core

PRIME: Opportunistic Transmission of MAs

PRIME:Enclaves vs. Meshes

MAs are not forwarded beyond a unicast enclave The frequency with which multicast-MAs are forwarded outside of the enclave decreases exponentially

PRIME: Packet Forwarding Upon reception of a data packet, nodes first check for a hit in their data packet cache –If the (sender's address, seq. num.) pair is already in the cache, the packet is silently dropped. –Otherwise, the receiving node inserts the pair in its cache and determines whether it has to relay the data packet or not, and passes the packet to the upper layers if it is also a receiver for the flow. The two rules used to decide when to relay a multicast data packet are: –First, if the node is part of the multicast mesh it broadcasts the packet without further processing. –Second, a node located outside of the multicast mesh relays a data packet it receives from a neighbor if it was selected by that neighbor as one of its next hops to the core. data packets travel along meshes consisting of braided paths, until they reach either the first mesh member or the core

PRIME: Packet Forwarding

PRIME: Packet Forwarding and Local Repairs Unicast data packets are also routed using meshes composed of braided shortest paths from sources to destinations –Nodes forward a unicast data packet they receive if they were selected as a next hop to the destination by the previous relay of the data packet Nodes located outside of the multicast mesh of a group employ the transmission of data packets by their next hops as implicit ACKs. If a node fails to receive three consecutive implicit ACKs from a neighbor, then it removes that node from the neighborhood list and takes one of three actions to locally repair the braided path to the core or unicast destination.

PRIME: Packet Forwarding and Local Repairs If after removing the neighbor from the neighborhood list, the current node is left with no paths to the core, then it broadcasts a neighbor request. Neighbor requests are replied by nodes with MAs that advertise their latest routing information regarding a given destination. a d b

PRIME: Local Repairs If the distance to the destination of the current node increases, then it broadcasts a new MA that informs other nodes of its new state. This way, a new set of neighbors will be selected as this node's next hops and previous upstream nodes may select new nodes as their next hops to the destination. ad b c e

PRIME: Local Repairs If the distance to the destination of the current node does not increase, then it checks its neighborhood list for other potential next hops to the destination. –If at least one of these potential nodes exists, then a MA is transmitted to inform the potential next hop that it has been selected as next hop. –If no potential nodes are found, no further action is taken. ad b c e

PRIME: Core Election Core elections are held only if the MR contains a multicast address. Upon reception of a MR, a receiver first determines whether it has received a MA from the core of the multicast group within the last two MA-intervals. –If the node has, no further action in this regard is needed. –Otherwise, the receiver considers itself the core of the group and starts transmitting MAs to its neighbors, stating itself as the core of the group. –Nodes propagate MAs based on the best announcements they receive from their neighbors. A MA with a higher core id is considered better than one with a lower core id. Eventually, each connected component has only one core. A core election is also held if the network is partitioned. –A node detects a partition if it does not receive a fresh MA from the core for three consecutive MA-intervals and if it has received data packets within the last four MA-intervals.

PRIME: Adaptive Strategies Nodes employ information collected at the MAC layer to select the strategy that best fits the nodes' perceived channel conditions. We use the following three strategies to take advantage of that information: –Adjust the size of the mesh –Adjust the mesh dynamics –Adjust timers

Performance Results We present simulation results comparing PRIME against ODMRP and PUMA for the case of multicast traffic, as well as against AODV with ODMRP and OLSR with ODMRP for the case of combined unicast and multicast traffic. We use packet delivery ratio, generalized group delivery ratio, end-to-end delay, and total overhead as our performance metrics. –The generalized group delivery ratio is an extension of the group reliability metric, in which a packet is considered as delivered, if and only if it is received by a given proportion of the receivers, –This metric emphasizes the importance of group delivery by not considering packets that are received by a small subset of the group members.

Performance Results: Simulation Environment

Increasing Number of Sources: Random Waypoint

Increasing Number of Sources: Group Mobility

Increasing Number of Groups: Group Areas of 600x600m

3 Sources per Group, Group Areas of 600x600m

1 Source per Group, Group Areas of 900x900m

3 Sources per Group, Group Areas of 900x900m

Combined Multicast and Unicast Traffic

Conclusions We have shown by example that it is possible and perhaps desirable to support the dissemination of information for end user applications using a single routing protocol, and that interest-driven routing should be adopted for MANETs PRIME redefines how signaling is done for routing in MANETs by integrating unicast and multicast routing using interest-driven establishment of meshes and enclaves. PRIME establishes meshes (connected components of a MANET) that are activated and deactivated by the presence or absence of data traffic. Enclaves confine most of the dissemination of control packets to those that actually need the information. –This property has a positive impact over the scalability of the protocol, particularly in medium to large networks in which the members of the same multicast group tend to be close by. The results of a series of simulation experiments illustrate that PRIME attains higher delivery ratios than ODMRP and PUMA for multicast traffic, and higher delivery ratios than AODV and OLSR for unicast traffic. At the same time, PRIME induces much less communication overhead and attains lower delays than the other routing protocols.