The GOES-R Coastal Waters Imager; a new Capability for Monitoring the Coastal Ocean Curtiss O. Davis Naval Research Laboratory Washington, D. C. USA Contributions.

Slides:



Advertisements
Similar presentations
NOAA National Geophysical Data Center
Advertisements

Lesson 12: Technology I Technology matters Most of the topics we’ve learned so far rely on measurement and observation: – Ocean acidification – Salinity.
Satellite Ocean Color Overview Dave Siegel – UC Santa Barbara With help from Chuck McClain, Mike Behrenfeld, Bryan Franz, Jim Yoder, David Antoine, Gene.
Ecology, Climate, Physical Oceanography. Bering Sea, Alaska SeaWifs Image (Norman Kuring image, NASA, April 25, 1998) Turquoise = phytoplankton bloom.
REMOTE SENSING Presented by: Anniken Lydon. What is Remote Sensing? Remote sensing refers to different methods used for the collection of information.
NRL09/21/2004_Davis.1 GOES-R HES-CW Atmospheric Correction Curtiss O. Davis Code 7203 Naval Research Laboratory Washington, DC 20375
OSU_08/1/2005_Davis.1 GOES-R Coastal Waters Imaging and the COAST Risk Reduction Activities Curtiss O. Davis College of Oceanic and Atmospheric Sciences.
Water Level Sensor Physical processes related to bio-optical properties on the New York Bight inner continental shelf Grace C. Chang 1, Tommy D. Dickey.
OSU_08/1/2005_Davis.1 COAST Risk Reduction Activities Curtiss O. Davis College of Oceanic and Atmospheric Sciences Oregon State University, Corvallis,
NRL09/21/2004_Davis.1 GOES-R HES-CW Requirements Curtiss Davis COAS, Oregon State university.
Temporal and Spatial Variability of Physical and Bio-optical Properties on the New York Bight Inner Continental Shelf G. C. Chang, T. D. Dickey Ocean Physics.
1 Issue: Society Depends on Ecosystem Modeling to Predict Threats and Minimize Risk.
The Importance of Coastal Waters - Recent Reports National Coastal Condition Report National Coastal Condition Report Heinz Center’s State of the Nation’s.
OSU_2/20/2006_Davis.1 Geostationary Coastal Waters Imaging as a Component of IOOS Curtiss O. Davis College of Oceanic and Atmospheric Sciences Oregon State.
Satellite Imagery Meteorology 101 Lab 9 December 1, 2009.
NRL09/21/2004_Davis.1 Monterey Bay Experiment Plan COAST.
NRL09/21/2004_Davis.1 CIOSS/COAST GOES-R Risk Reduction Activities for HES-CW CIOSS: Cooperative Institute for Oceanographic Satellite Studies, College.
Integrated Ecosystem Assessment for the Gulf of Mexico Becky Allee Gulf Coast Services Center.
Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute.
Center for Remote Sensing and Computational Ecology PREDICTION OF HYPERSPECTRAL IOPs ON THE WEST FLORIDA SHELF W. Paul Bissett Florida Environmental Research.
The Gulf of Maine Ocean Observing System. Technical Program Real time monitoring and forecasts of: Weather - surface ocean winds, air temperature, visibility.
UNH Coastal Observing Center NASA GEO-CAPE workshop August 19, 2008 Ocean Biological Properties Ru Morrison.
GEO-CAPE Ocean Color STM Measurement Instrument Platform Other Science Questions Approach Requirements Requirements Requirements Needs How do short-term.
NOAA Navigation Services CO-OPS Update Richard Edwing National Ocean Service Center for Operational Oceanographic Products and Services Hydrographic Services.
Coastal Water Quality Remote Sensing Welcome Dr. Jeff Payne Deputy Director NOAA Coastal Services Center October 7, 2003.
OSU_08/1/2005_Davis.1 GOES-R Coastal Waters Imaging and the COAST Risk Reduction Activities Curtiss O. Davis and Mark Abbott College of Oceanic and Atmospheric.
NRL09/21/2004_Davis.1 GOES-R and the Hyperspectral Environmental Sensor (HES) Suite Curtiss O. Davis Code 7203 Naval Research Laboratory Washington, DC.
Green-1 9/17/2015 Green Band Discussion Satellite Instrument Synergy Working Group September 2003.
Satellite Data Resources for Atmospheric Science Applications.
GEO-CAPE Ocean Color Observations: Utilization for Applications/Operations Menghua Wang and Paul DiGiacomo NOAA/NESDIS Center for Satellite Applications.
Monitoring Bio-Optical Processes Using NPP-VIIRS And MODIS-Aqua Ocean Color Products Robert Arnone (1), Sherwin Ladner (2), Giulietta Fargion (3), Paul.
Analysis of GOCI data in Preparation for GEO-CAPE Curtiss O. Davis 1 ZhongPing Lee 2 1 COAS, Oregon State University, Corvallis, OR USA
U.S. Department of the Interior U.S. Geological Survey Multispectral Remote Sensing of Benthic Environments Christopher Moses, Ph.D. Jacobs Technology.
Potential Applications of GOES-R data to NOAA Fisheries Cara Wilson & R. Michael Laurs NOAA/NMFS Pacific Fisheries Environmental Laboratory David G. Foley.
GOES Applications: Research and Management of Living Marine Resources in the Central and Western Pacific David G. Foley Joint Institute for Marine and.
GOES-R, May 2004 Coastal Ocean Science Harmful Algal Blooms and GOES-R GOES-R Users Conference, 2004 SeaWiFS data from OrbImage, Inc. Richard P. Stumpf.
The Future of NOAA Coastal and Ocean Services in the GOES-R Era Mary Culver NOAA Coastal Services Center.
1 Applications of Remote Sensing: SeaWiFS and MODIS Ocean Color Outline  Physical principles behind the remote sensing of ocean color parameters  Satellite.
Detecting and Monitoring Harmful Algal Blooms on Florida Coast Joseph Tuzzino, Brooklyn Technical High School Jonathan Tien, St. Francis Preparatory Dr.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 Image: MODIS Land Group,
Inter-comparison of Satellite Algal Bloom Detection Techniques Using Surface and Top of Atmosphere Signals Students: May Chum and Pierre Ramos Mentors:
AN ENHANCED SST COMPOSITE FOR WEATHER FORECASTING AND REGIONAL CLIMATE STUDIES Gary Jedlovec 1, Jorge Vazquez 2, and Ed Armstrong 2 1NASA/MSFC Earth Science.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 Presented by Menghua Wang.
GSFC GOES-R Notional End-To-End Architectures Satellite Direct Readout Conference for the Americas December 9 – 13, 2002 Miami, Florida Sandra Alba Cauffman.
Ocean Color Remote Sensing Pete Strutton, COAS/OSU.
Title page. “ Possible Geocape Capabilities Measurements of Diurnal Variability with Requirements of hours to days……………. “
What is the key science driver for using Ocean Colour Radiometry (OCR) for research and applications? What is OCR, and what does it provide? Examples of.
Ocean Color Products: The challenge of going from stocks to rates
Optical Water Mass Classification for Interpretation of Coastal Carbon Flux Processes R.W. Gould, Jr. & R.A. Arnone Naval Research Laboratory, Code 7333,
Improvements of the Geostationary Operational Environmental Satellites (GOES)-R series for Climate Applications GOES-R data and products will support applications.
NRL09/21/2004_Davis.1 CIOSS/COAST GOES-R Risk Reduction Activities for HES-CW CIOSS: Cooperative Institute for Oceanographic Satellite Studies, College.
Kelley Bostrom University of Connecticut NASA OCRT Meeting May 12, 2010.
The Physical Observing System: From Monitoring and Predicting Hazards to Long Term Changes Doug Wilson Co-Chairman, IOCARIBE-GOOS U.S. NOAA GEO CZCP Workshop.
Science Questions Societal Relevance Observational Requirements Observational Strategies Satellite Missions Scientific Basis for NASA OBB Mission Planning.
Coastal Zone Color Scanner CZCS Wayne E. Esaias Goddard Space Flight Center Oceans and Ice Branch October 27, 2004.
NASA/NOAA/Navy/Forest Service/USDA Cooperative Mission for DEEP Instrument DEEP: Diurnal Earth Explorer Probe NASA: Instrument, Enhanced Telemetry, Data.
OSU_08/1/2005_Davis.1 COAST GOES-R Coastal Waters Imaging (CWI) Risk Reduction Activities Curtiss O. Davis College of Oceanic and Atmospheric Sciences.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Satellite Observation and Model Simulation of Water Turbidity in the Chesapeake.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 Ecosystem Theme Introduction.
1 Recommendations from the 2 nd GOES-R Users’ Conference: Jim Gurka Tim Schmit NOAA/ NESDIS Dick Reynolds Short and Associates.
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 Image: MODIS Land Group,
Optical Properties in coastal waters change rapidly on very fine spatial scales. The existence of multiple ocean color systems provides a unique capability.
Sustainable Beaches: Weather Impacts VADM Conrad C. Lautenbacher, Jr. US Navy (Ret.) Under Secretary of Commerce for Oceans and Atmosphere NOAA Administrator.
1 GLIMPSING THE FIRST PRODUCTS FROM VIIRS Dr. Wayne Esaias NASA GSFC Thomas F. Lee Jeffrey Hawkins Arunas Kuciauskas Kim Richardson Jeremy Solbrig Naval.
Cal/Val at CIOSS Ted Strub – CIOSS/COAS/OSU Cooperative Institute for Oceanographic Satellite Studies College of Oceanic and Atmospheric Sciences Oregon.
Remote Sensing of the Ocean and Coastal Waters
Background of harmful algal blooms (HABs)
Jian Wang, Ph.D IMCS Rutgers University
IMAGERY DERIVED CURRENTS FROM NPP Ocean Color Products 110 minutes!
Presentation transcript:

The GOES-R Coastal Waters Imager; a new Capability for Monitoring the Coastal Ocean Curtiss O. Davis Naval Research Laboratory Washington, D. C. USA Contributions from Mark Abbott, Bob Arnone, Paul Menzel, Chris Brown, Ed Howard, et al.

GOES-R Coastal Water Imager CW will provide first ocean color capability from geo orbit –Can make measurements in constant tidal conditions CW enables more frequent views of U.S. coastal ocean –Necessary to resolve rapid changes due to tides and coastal currents CW provides more opportunities for cloud-free viewing –Better detect/monitor/track rapidly changing phenomena such as Harmful Algal Blooms, sediment plumes, and chaotic coastal zone currents magnitude that could be underestimated due to diurnal behavior CW offers higher spatial resolution ( 300 meters) –Fisheries researchers are limited by spatial resolution of current systems—better than 1 km needed to improve measurement and modeling of small scale phenomena such as migration pathways for salmon fisheries

Visible Infrared Imaging Radiometer Suite (VIIRS) Being built by Raytheon SBRS –SeaWiFS and MODIS heritage First flight on NPOESS Preparatory Project (NPP) in 2007 then NPOESS satellites starting in 2009 Seven ocean color channels and 2 SST channels Approximately 1 km GSD ocean color –742 m GSD and Nadir, 1092 m at +/- 850 km, 1597m at End of Scan (+/ km) –Designed to meet global ocean imaging requirements at 1 km GSD –Maximum revisit frequency of twice a day at 1030 and 1530 Approximately 1 km GSD ocean color –742 m GSD and Nadir, 1092 m at +/- 850 km, 1597m at End of Scan (+/ km) –Designed to meet global ocean imaging requirements at 1 km GSD –Maximum revisit frequency of twice a day at 1030 and 1530

Why HES-CW given VIIRS? Tides, diel winds (such as the land/sea breeze), river runoff, upwelling and storm winds drive coastal currents that can reach several knots. Furthermore, currents driven by diurnal and semi-diurnal tides reverse approximately every 6 hours. VIIRS daily sampling at the same time cannot resolve tides, diurnal winds, etc. HES-CW will have the ability to rapidly sample coastal waters providing a unique capability to observe the dynamic coastal ocean environment. HES-CW will provide higher spatial resolution (300 m vs m) HES-CW will provide additional channels to measure solar stimulated fluorescence, suspended sediments, CDOM and improved atmospheric correction. Example tidal cycle from Charleston, OR. Black arrows VIIRS sampling, red arrows HES-CW sampling. Example tidal cycle from Charleston, OR. Black arrows VIIRS sampling, red arrows HES-CW sampling. These improvements are critical for sampling coastal waters.

Coastal Remote Sensing Applications A. Coastal Development 1. Mapping Floodplains 2. Hurricane Forecasts 3. Identifying At-Risk Properties 4. Managing Nuisance Plants 5. Mapping Oceanfront Setbacks B. Habitat 6. Mapping Coral Reefs (Hawaii & U.S. Territories) 7. Monitoring the Spread of Brown Marsh 8. Mapping Kelp Beds 9. Preserving Wetlands and Riparian Areas 10. Determining Marine Protected Boundaries C. Water Quality 11. Monitoring Storm Water Runoff 12. Monitoring Water Quality 13. Monitoring Red Tides 14. Mitigating Oil Spills 15. Monitoring Sewage Outfall Impacts D. Living Resources 16. Mapping Sea Turtle Habitat 17. Damage to Submerged Aquatic Vegetation 18. Controlling Invasive Marsh Grasses 19. Mapping Oyster Beds 20. Impacts of Commercial Shellfish Harvesting E. Waterways 21. Nautical Charts for Recreational Boaters 22. Stabilizing a Fluctuating Shoreline 23. Protecting Cultural Resources 24. Siting a Marine Outfall Pipeline 25. Identifying Channel Obstructions (Courtesy Ed. Howard, NOAA)

Key Threshold and Goal Requirements

More Requirements Sampling Frequency: –Threshold requirement is to sample the entire U.S. coastal waters once every three hours –Goal is hourly –Additional sampling for selected regions at higher frequency –Daylight hours only –May be adjusted for cloud cover; use Advanced Baseline Imager (ABI) to select cloud free areas for imaging Many other requirements for simultaneity, stability, jitter, etc.

Prioritizing Goal Requirements HES-CW built to the threshold requirements will meet the basic needs and provide a dramatic improvement over present capabilities for coastal imaging. Goal requirements compete with each other, e.g. higher spatial resolution makes it harder to increase sampling frequency or SNR. Top priority goals are: –Higher frequency of sampling –Additional channels for atmospheric correction –Hyperspectral instead of multispectral

Frequency of Sampling Threshold requirement is to sample all U. S. coastal waters (except Alaska) once every three hours during daylight –Plus additional hourly sampling of selected areas Goal requirement is hourly sampling of all U.S. coastal waters is strongly recommended Frequency of sampling may be tied to HES architecture –If HES is one instrument then sampling of coastal waters will be strictly limited to fit around the Disk Sounding task. –Separate HES-CW instrument could offer much more flexibility. May mean accepting threshold requirements for SNR, etc.

Multispectral or Hyperspectral? The threshold 14 channels are adequate for the proposed applications when you do not image the bottom. Hyperspectral is strongly recommended –When the bottom is visible, e.g. on the entire West Florida Shelf to 30 km offshore, hyperspectral data is required to resolve the increased complexity of the scene. –Polar orbiting ocean color imagers all have different wavelength channels. A hyperspectral HES-CW would make cross calibration of all ocean color sensors possible.

Resolving the Complexity of Coastal Optics Requires Hyperspectral Remote Sensing Extensive studies using shipboard measurements and airborne hyperspectral imaging have shown that visible hyperspectral imaging is the only tool available to resolve the complexity of the coastal ocean from space. (Lee and Carder, Appl. Opt., 41(12), 2191 – 2201, 2002.)

Spatial Resolution The spatial resolution is at Nadir (over the Equator) so it degrades by latitude in U. S. coastal waters. The threshold requirement is 300 m at nadir; order m in U. S. Coastal waters. –Considered adequate for water column properties The goal requirement is 150 m (200 m over U. S.). It will be very expensive to achieve this higher resolution. –Cost goes as the square of the spatial resolution improvement –May not be possible for ocean SNR, etc. –Will compete with frequency of coverage, SNR, and number of bands.

Spatial Resolution Comparison 6 km 20 km 30 m150 m300 m 0.65  m 0.55  m 0.45  m Hyperion Data RGB Composite The effect of spatial degradation from 30 m to 150 m and 300 m is illustrated Detailed coastal features are compromised at coarser resolutions Overall characteristics retained even at 300 m resolution (Courtesy Ed. Howard, NOAA)

MODIS 1 km water clarity Modeled HES-CW (250 m) HES-CW higher spatial resolution critical to monitor complex coastal waters

Signal-to-Noise Ratio (SNR) Threshold requirement is 300:1 for ocean radiances –Initial requirement for SeaWiFS; but SeaWiFS performance greatly exceeded this (more like 450:1) Goal requirement is 900:1 for ocean radiances –Exceeds MODIS SNR –Difficult and costly to achieve –SNR goes up as the square root of the signal The main noise source is shot noise Do we need more than the threshold 300:1? If so are we happy with 400:1?, 500:1? Is the threshold ok for some channels, but not others? If so which channels do we need more SNR?

HES-CW Ocean and Cloud Radiance Values SNR is calculated based on the ocean radiances (blue line) Sensor must not saturate on the cloud radiances (pink line)

SeaWiFS 1 km dataPHILLS-2 9 m data mosaic Sand waves in PHILLS m data Fronts in AVIRIS 20 m data Near-simultaneous data from 5 ships, two moorings, three Aircraft and two satellites collected to address issues of scaling in the coastal zone. (HyCODE LEO-15 Experiment July 31, 2001.) Existing Data Sets Are Available to Demonstrate Science and Products Credit: Curt Davis, NRL

HES-CW Products The primary products are calibrated at sensor radiances for all channels –The threshold 14 channels and any additional goal channels The other required ocean product is chlorophyll –This requires atmospheric correction to provide water leaving radiances used in this calculation Additional products proposed include reflectance, turbidity, particulate and dissolved absorption, backscatter and fluorescence. Products are geo-located to approximately 1 Ground Sample Distance (GSD) Issues to be addressed: –Methods for on-orbit calibration and validation of products. –Methods for atmospheric correction.

Fluorescence provides better phytoplankton measurements in optically-complex coastal waters MODIS Terra l2 scene from 3 October The ratio of fluorescence line height to chlorophyll changes as a function of the physiological state of the phytoplankton. This can be exploited to assess the health and productivity of the phytoplankton populations. Fluorescence line height not available from VIIRS. MODIS Terra l2 scene from 3 October The ratio of fluorescence line height to chlorophyll changes as a function of the physiological state of the phytoplankton. This can be exploited to assess the health and productivity of the phytoplankton populations. Fluorescence line height not available from VIIRS.

NOAA HES-CW Applications  Water quality monitoring  Coastal hazard assessment  Navigation safety  Human and ecosystem health awareness  Natural resource management in coastal and estuarine areas  Climate variability prediction (e.g., carbon cycle)  Landscape changes  Coral reef detection and health appraisal  Development of Nowcast and Forecast models of the coastal ocean

Harmful Algal Blooms (HABs) In the Gulf of Mexico, blooms of the toxic algae Karenia brevis result in shellfish bed closures and lost tourism that cost the state of Florida millions of dollars each year. Similar problems in other parts of the country with other toxic species. Ship based monitoring very expensive and time consuming Inadequate data frequently leads to unnecessary closings. HABSOS system is being developed to provide early warnings using SeaWiFS data and models HES-CW will greatly improve warning systems like HABSOS –More frequent data for cloud clearing –Higher spatial resolution to assess conditions closer to the shell fish beds and beaches In the Gulf of Mexico, blooms of the toxic algae Karenia brevis result in shellfish bed closures and lost tourism that cost the state of Florida millions of dollars each year. Similar problems in other parts of the country with other toxic species. Ship based monitoring very expensive and time consuming Inadequate data frequently leads to unnecessary closings. HABSOS system is being developed to provide early warnings using SeaWiFS data and models HES-CW will greatly improve warning systems like HABSOS –More frequent data for cloud clearing –Higher spatial resolution to assess conditions closer to the shell fish beds and beaches

When K. brevis Blooms, conditions tend to be calm. Under these Conditions the cells exhibit a dramatic diel migration. The net result is a 10X increase in cells at the air-sea interface over a several hour period. This unique feature will be readily detected in HES-CW data. Frequent sampling can assist in detection and classification of HABs

HABSOS can utilize improved spatial resolution and frequency of coverage from HES-CW

GOES-R HES-CW Schedule and COAST In June 2004 NOAA selected three contractors (BALL, BAE and ITT) to conduct two year evaluation of requirements and design studies for HES. A contractor will be selected to build HES in Launch of GOES-R is planned for NOAA has formed the Coastal Ocean Applications and Science Team (COAST) to: –Evaluate HES-CW threshold and goal requirements and recommend priorities for the goals –Involve the broader oceanographic community to help NOAA achieve their objectives for HES-CW –Mark Abbott is the COAST team leader and Curt Davis is the COAST Executive Director.

HES-CW Summary HES-CW will allow a major advance in our ability to monitor and manage the coastal ocean. HES-CW built to the threshold requirements will meet the basic needs for coastal imaging. –Meeting the goal requirements of hourly imaging and hyperspectral imaging would provide significant additional benefits. Much as the introduction of GOES imagery in the 1960s revolutionized weather prediction, HES-CW data will be key for the planned development of nowcast and forecast models for the coastal ocean.

The COAST Team Mark Abbott, OSU, COAST Team Leader Curtiss Davis, OSU (June 2005) COAST Executive Director Bob Arnone, NRL Barney Balch, BLOS Robert Bidigare, UHPaul Bissett, FERI Janet Campbell, UNH Heidi Dierssen, U Conn. Larry Harding, HPL, UMCES Victor V. Klemas, UD Raphael Kudela, UCSC Ricardo Letelier, OSU Steve Lohrenz, USM Oscar Schofield, Rutgers David Siegel, UCSBHeidi Sosik, WHOI Dariusz Stramski, SIOPeter Strutton, OSU Jan Svejkosvky, Ocean Imaging Kenneth Voss, U Miami Nan D. Walker, LSUJames Yoder, URI NOAA: Stan Wilson, NESDIS, John Pereira, NESDIS, Mike Ondrusek, ORA, Menghua Wang, ORA, Rick Stumpf, NOS, Mary Culver, CSC, Cara Wilson, NMFS, Christopher Brown, CICS NASA: Paula Bontempi, NASA HQ, Antonio Mannino, GSFC Navy: Steve Ackleson, ONR, Robert Winokur, Technical Director, CNO

Contacts and Further Information Mark Abbott, Dean of the College of Oceanic and Atmospheric Sciences at Oregon State University is the COAST Chairman Curtiss Davis, U.S. Naval Research Laboratory, is the Coast Executive Director NOAA Contacts: –John Pereira, NOAA NESDIS –Stan Wilson, NOAA NESDIS –Mike Ondrusek, NOAA NESDIS –Mary Culver, NOAA NOS –Rick Stumpf, NOAA NOS –Chris Brown, NOAA Cooperative Institute for Climate Studies GOES-R Web Site COAST web site Brochure