ME751 Advanced Computational Multibody Dynamics Inverse Dynamics Equilibrium Analysis Various Odd Ends March 18, 2010 © Dan Negrut, 2010 ME751, UW-Madison.

Slides:



Advertisements
Similar presentations
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems: Chapter 6 November 1, 2011 © Dan Negrut, 2011 ME451, UW-Madison TexPoint fonts.
Advertisements

ME751 Advanced Computational Multibody Dynamics Section 9.3 February 18, 2010 © Dan Negrut, 2010 ME751, UW-Madison Discontent is the first necessity of.
Mechanics of Rigid Body. C
Chapters 17, 18 Review. Der Innere Schweinehund (The inner Pigdog)
The robot structure model design 2 Curse 5. Modeling: the robot AcTrMStTk V(t) T(t)  (t) q(t) x(t)
© 2011 Autodesk Freely licensed for use by educational institutions. Reuse and changes require a note indicating that content has been modified from the.
ME751 Advanced Computational Multibody Dynamics Section 9.2 February 2, 2010 © Dan Negrut, 2010 ME751, UW-Madison “My own business always bores me to death;
ME451 Kinematics and Dynamics of Machine Systems Relative Kinematic Constraints, Composite Joints – 3.3 October 4, 2011 © Dan Negrut, 2011 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Cam-Follower Constraints – 3.3 Driving Constraints – 3.5 October 11, 2011 © Dan Negrut, 2011 ME451, UW-Madison.
ME 440 Intermediate Vibrations
Force vs. Torque Forces cause accelerations
ME 4135 Fall 2011 R. R. Lindeke, Ph. D. Robot Dynamics – The Action of a Manipulator When Forced.
Ch. 7: Dynamics.
Articulated Body Dynamics The Basics Comp 768 October 23, 2007 Will Moss.
Introduction to ROBOTICS
ME451 Kinematics and Dynamics of Machine Systems Initial Conditions for Dynamic Analysis Constraint Reaction Forces October 23, 2013 Radu Serban University.
ME451 Kinematics and Dynamics of Machine Systems
Velocities and Static Force
ME451 Kinematics and Dynamics of Machine Systems Review of Elements of Calculus – 2.5 Vel. and Acc. of a Point fixed in a Ref Frame – 2.6 Absolute vs.
ME 440 Intermediate Vibrations Tu, Feb. 17, 2009 Section 2.5 © Dan Negrut, 2009 ME440, UW-Madison.
Definition of an Industrial Robot
ME751 Advanced Computational Multibody Dynamics Simulation Visualization “How To” Newton-Euler Form of the EOM March 11, 2010 © Dan Negrut, 2010 ME751,
ME451 Kinematics and Dynamics of Machine Systems
Robot Dynamics – Slide Set 10 ME 4135 R. R. Lindeke, Ph. D.
Dynamics.  relationship between the joint actuator torques and the motion of the structure  Derivation of dynamic model of a manipulator  Simulation.
ME 440 Intermediate Vibrations Th, Feb. 5, 2009 Section 2.2 and 2.6 © Dan Negrut, 2009 ME440, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 11, , 6.1.4, 6.2, starting 6.3 © Dan Negrut, 2010 ME451,
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems December 1, 2011 Solving Index 3 DAEs using Newmark Method © Dan Negrut, 2011.
ME 440 Intermediate Vibrations Th, March 26, 2009 Chapter 5: Vibration of 2DOF Systems © Dan Negrut, 2009 ME440, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems
ME751 Advanced Computational Multibody Dynamics Section 9.3 February 16, 2010 © Dan Negrut, 2010 ME751, UW-Madison “Courage is fear holding on a minute.
ME 440 Intermediate Vibrations Th, Feb. 10, 2009 Sections 2.6, 2.7 © Dan Negrut, 2009 ME440, UW-Madison.
ME751 Advanced Computational Multibody Dynamics Section 9.6 February 25, 2010 © Dan Negrut, 2010 ME751, UW-Madison “In China if you are one in a million.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Vel. And Acc. of a Fixed Point in Moving Frame Basic Concepts in Planar Kinematics February.
ME451 Kinematics and Dynamics of Machine Systems Basic Concepts in Planar Kinematics 3.1, 3.2 September 18, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Generalized Forces 6.2 October 16, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Driving Constraints 3.5 October 19, 2010 © Dan Negrut, 2010 ME451, UW-Madison.
COSMOSMotion Slides.
ME451 Kinematics and Dynamics of Machine Systems Introduction to Dynamics 6.1 October 09, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Singular Configurations 3.7 October 07, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Review of Differential Calculus 2.5, 2.6 September 11, 2013 Radu Serban University of Wisconsin-Madison.
ME 440 Intermediate Vibrations Tu, April 14, 2009 End Chapter 5: Vibration of 2DOF Systems Begin Chapter 6: Multi-degree of Freedom Systems © Dan Negrut,
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems March 31, , starting 6.3 © Dan Negrut, 2009 ME451, UW-Madison Quote.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 10, , starting 6.3 © Dan Negrut, 2011 ME451, UW-Madison TexPoint.
ME451 Kinematics and Dynamics of Machine Systems
Physics CHAPTER 8 ROTATIONAL MOTION. The Radian  The radian is a unit of angular measure  The radian can be defined as the arc length s along a circle.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems May 07, 2009 EOM in non-Cartesian Reference Frames ~ not in textbook~ Quote.
ME451 Kinematics and Dynamics of Machine Systems
ME 440 Intermediate Vibrations Th, April 16, 2009 Chapter 6: Multi-degree of Freedom (MDOF) Systems © Dan Negrut, 2009 ME440, UW-Madison Quote of the Day:
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 08, , 6.1.4, 6.2, starting 6.3 © Dan Negrut, 2011 ME451,
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 16, , starting 6.3 © Dan Negrut, 2010 ME451, UW-Madison TexPoint.
Robotics II Copyright Martin P. Aalund, Ph.D.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems December 6, 2011 Equilibrium Analysis & Inverse Dynamics Analysis ME451 Wrap.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems December 9, 2010 Solving Index 3 DAEs using Newmark Method © Dan Negrut, 2010.
ME451 Kinematics and Dynamics of Machine Systems Driving Constraints 3.5 Start Position, Velocity, and Acc. Analysis 3.6 February 26, 2009 © Dan Negrut,
ME451 Kinematics and Dynamics of Machine Systems Start Position, Velocity, and Acc. Analysis 3.6 October 21, 2010 © Dan Negrut, 2010 ME451, UW-Madison.
ME 440 Intermediate Vibrations Tu, Feb. 3, 2009 Sections , © Dan Negrut, 2009 ME440, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Absolute Constraints 3.2 September 20, 2013 Radu Serban University of Wisconsin-Madison.
ME751 Advanced Computational Multibody Dynamics Section 9.4 February 23, 2010 © Dan Negrut, 2010 ME751, UW-Madison “When You Come to a Fork in the Road,
ME 440 Intermediate Vibrations Th, April 2, 2009 Chapter 5: Vibration of 2DOF Systems © Dan Negrut, 2009 ME440, UW-Madison Quote of the Day: It is a miracle.
Ying Yi PhD Chapter 9 Rotational Dynamics 1 PHYS HCC.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 4, 2010 Chapter 6 © Dan Negrut, 2010 ME451, UW-Madison TexPoint fonts.
Velocity Propagation Between Robot Links 3/4 Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems December 9, 2010 Solving Index 3 DAEs using Newmark Method © Dan Negrut, 2010.
ME751 Advanced Computational Multibody Dynamics
1. Kinetic energy, potential energy, virtual work.
ME451 Kinematics and Dynamics of Machine Systems
LOGIKA & PEMROGRAMAN KOMPUTER MATLAB & Simulink
ME321 Kinematics and Dynamics of Machines
Presentation transcript:

ME751 Advanced Computational Multibody Dynamics Inverse Dynamics Equilibrium Analysis Various Odd Ends March 18, 2010 © Dan Negrut, 2010 ME751, UW-Madison “Action speaks louder than words but not nearly as often..” Mark Twain

Before we get started… Last Time: Learn how to obtain EOM for a 3D system: the r-p formulation Today: Super briefly talk about the EOM when using Euler Angles Discuss two classes of forces likely to be encountered in Engineering Apps Inverse Dynamics Analysis Equilibrium Analysis Final Project: Feedback: I need your final version of the proposal. Some might have to modify first draft, some we’ll have to work a bit on the document This is part of HW, will have to be turned in with the handwritten part of the HW on March 25 This version is what I’ll use to evaluate your work HW due on Th, March 25 posted online For the MATLAB part please from now on your zipped files to Naresh (the TA) 2

The Formulation of the EOM Using Euler Angles 3

4

The Formulation of the EOM Using Euler Angles [Cntd.] 5

Modeling Pitfall [1/3] [Short Detour] 6

Modeling Pitfall [2/3] [Short Detour] 7

Modeling Pitfall [3/3] [Short Detour] The singularity you got in your Jacobian in HW8 if you defined the driving constraint using two collinear vectors can be traced back to the discussion on the previous slide Anne used the pseudoinverse of the Jacobian, but that’s not the right way to go about it since it concentrates on the effect rather the cause of the problem Tyler and Jim suggested changing the vectors used to model the constraints Rather than using two collinear vectors, they used two vectors that were at ¼ /2 This was the good solution This was a topic on discussion on the forum 8

Dynamics in the Absence of Constraints 9

10

Comments 11

Discussion on Applied Forces and Torques 12

Virtual Work: Contribution of concentrated forces/torques 13

Concentrated Forces: TSDA (Translational Spring-Damper-Actuator) – pp.445 Setup: You have a translational spring-damper-actuator acting between point P i on body i, and P j on body j Translational spring, stiffness k Zero stress length (given): l 0 Translational damper, coefficient c Actuator (hydraulic, electric, etc.) – symbol used “h” 14

Concentrated Forces: TSDA 15

Concentrated Forces: TSDA 16

Concentrated Forces: TSDA 17

Concentrated Torques: RSDA (Rotational Spring-Damper-Actuator) – pp.448 Rotational spring, stiffness k Rotational damper, coefficient c Actuator (hydraulic, electric, etc.) – symbol used “h” Setup: You have a rotational spring-damper-actuator acting between two lines, each line rigidly attached to one of the bodies (dashed lines in figure) 18

Virtual Work: Contribution of the active forces/torques 19

Concentrated Torques: RSDA 20

Concentrated Torques: RSDA 21

End EOM Beginning Inverse Dynamics Analysis 22

[New Topic] Inverse Dynamics: The idea First of all, what does dynamics analysis mean? You apply some forces/torques on a mechanical system and look at how the configuration of the mechanism changes in time How it moves also depends on the ICs associated with that mechanical system In *inverse* dynamics, the situation is quite the opposite: You specify a motion of the mechanical system and you are interested in finding out the set of forces/torques that were actually applied to the mechanical system to lead to this motion When is *inverse* dynamics useful? It’s useful in controls. For instance in controlling the motion of a robot: you know how you want this robot to move, but you need to figure out what joint torques you should apply to make it move the way it should 23

Inverse Dynamics: The Math When can one talk about Inverse Dynamics? Given a mechanical system, a prerequisite for Inverse Dynamics is that the number of degrees of freedom associated with the system is zero You have as many generalized coordinates as constraints (THIS IS KEY) This effectively makes the problem a Kinematics problem. Yet the analysis has a Dynamics component since you need to compute reaction forces The Process (3 step approach): STEP 1: Solve for the accelerations using *exclusively* the set of constraints (the Kinematics part) STEP 2: Computer next the Lagrange Multipliers using the Newton-Euler form of the EOM (the Dynamics part) STEP 3: Once you have the Lagrange Multipliers, pick the ones associated with the very motions that you specified, and compute the reaction forces and/or torques you need to get the prescribed motion[s] 24

Inverse Dynamics: The Math 25

[AO – ME451] Example: Inverse Dynamics Zero Tension Angle of the spring: Compute torque that electrical motor applies to open handicapped door Apply motion for two seconds to open the door like Door Mass m = 30 Mass Moment of Inertia J’ = 2.5 Spring/damping coefficients: K = 8C = 1 All units are SI. 26

End Inverse Dynamics Beginning Equilibrium Analysis 27

[New Topic] Equilibrium Analysis: The Idea A mechanical system is in equilibrium if the system is at rest, with zero acceleration So what does it take to be in this state of equilibrium? You need to be in a certain configuration q The reaction forces; that is, Lagrange Multipliers, should assume certain values As before, it doesn’t matter what formulation you use, in what follows we will demonstrate the approach using the r-p formulation At equilibrium, we have that 28

Equilibrium Analysis: The Math 29

Equilibrium Analysis: Closing Remarks 30

[AO-ME451] Example: Equilibrium Analysis Free angle of the spring: Spring constant: k=25 Mass m = 10 Length L=1 All units are SI. Find the equilibrium configuration of the pendulum below Pendulum connected to ground through a revolute joint and rotational spring-damper element 31