C. Schwarz Physics with Antiprotons - Detector - Detector requirements Overview of the detector concept Selected detector components Simulations.

Slides:



Advertisements
Similar presentations
The Central Straw Tube Tracker In The PANDA Experiment
Advertisements

Carsten Schwarz KP2 Physics with anti protons at the future GSI facility Physics program Detector set-up p e - coolerdetector High Energy Storage.
DPG 2004 Köln C. Schwarz Particle Identification with the PANDA detector at GSI C.Schwarz, GSI.
The Lightweight Straw Tube Tracker for PANDA Detector at GSI Andrey Sokolov *,1, James Ritman 1, Peter Wintz 1, Paola Gianotti 2, Dario Orecchini 2 1 Institut.
HEP Experiments Detectors and their Technologies Sascha Marc Schmeling CERN.
James Ritman Univ. Giessen Overview of the Proposed Antiproton Facility Antiproton production facility High Energy Storage Ring (HESR) Electron cooling.
PHENIX Decadal Plan o Midterm upgrades until 2015 o Long term evolution after 2015 Dynamical origins of spin- dependent interactions New probes of longitudinal.
STORI’02Carsten Schwarz Physics with p at the Future GSI Facility Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR High.
Concept of the PANDA Detector for pp&pA at GSI Physical motivation for hadron physics with pbars The antiproton facility Detector concept Selected simulation.
Sep. 17, 2003KTB The future GSI facility Physics with antiprotons at the GSI future facility The PANDA detector Target options and vertex detector, triggers.
C. Schwarz Physics with Antiprotons - Detector - Detector requirements Overview of the detector concept Detector components Trigger Costs.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
Description of BTeV detector Jianchun Wang Syracuse University Representing The BTeV Collaboration DPF 2000 Aug , 2000 Columbus, Ohio.
Antiproton Physics at GSI The GSI Future project The antiproton facility The physics program - Charmonium spectroscopy - Charmed hybrids and glueballs.
Workshop on Experiments with Antiprotons at the HESR – April 2002, GSI Charmed Hadrons in Matter Introduction Medium Effects in the light quark sector.
EPS 2003, July 19, 2003David Buchholz, Northwestern University Performance of the D0 Experiment in Run II Detector Commissioning and Performance Accelerator,
The Design of a Detector for the Electron Relativistic Heavy Ion Collider Anders Ingo Kirleis 1, William Foreman 1, Elke-Caroline Aschenauer 2, and Matthew.
20 October, 2004GlueX Detector Review 1 The GlueX Detector Curtis A. Meyer This talk Next talk.
The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511 Shibata Lab 11R50047 Jennifer Newsham YSEP.
Carsten Schwarz PANDA June 2004 CID Cherenkov Imaging Detectors ● RICH software at HERMES, Ralf Kaiser, Glasgow ● Present status of DIRC, C.S., GSI ● Spiralling.
Report of the NTPC Test Experiment in 2007Sep and Others Yohei Nakatsugawa.
GlueX Particle Identification Ryan Mitchell Indiana University Detector Review, October 2004.
Antiproton Physics at GSI Introduction The antiproton facility The physics program - Charmonium spectroscopy - Hybrids and glueballs - Interaction of charm.
Performance of the PANDA Barrel DIRC Prototype 1 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt 2 Goethe-Universität Frankfurt Marko Zühlsdorf.
Large Magnetic Calorimeters Anselmo Cervera Villanueva University of Geneva (Switzerland) in a Nufact Nufact04 (Osaka, 1/8/2004)
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR P.
Atlas Detector. ATLAS Components Discovers head-on collisions of protons of extraordinarily high energy.
TOP counter overview and issues K. Inami (Nagoya university) 2008/7/3-4 2 nd open meeting for proto-collaboration - Overview - Design - Performance - Prototype.
work for PID in Novosibirsk E.A.Kravchenko Budker INP, Novosibirsk.
PID for super Belle (design consideration) K. Inami (Nagoya-u) - Barrel (TOP counter) - Possible configuration - Geometry - Endcap (Aerogel RICH) - Photo.
Detecting & observing particles
Latifa Elouadrhiri Jefferson Lab Hall B 12 GeV Upgrade Drift Chamber Review Jefferson Lab March 6- 8, 2007 CLAS12 Drift Chambers Simulation and Event Reconstruction.
James Ritman Univ. Giessen PANDA: An Experiment To Investigate Hadron Structure Using Antiproton Beams Overview of the GSI Upgrade Overview of the PANDA.
PANDA GSI 13. December 2006 PID TAG Georg Schepers PANDA Technical Assessment Group PID Status Report G. Schepers for the PID TAG GSI PID TAG.
ECAL PID1 Particle identification in ECAL Yuri Kharlov, Alexander Artamonov IHEP, Protvino CBM collaboration meeting
Detector & Interaction Region Concepts for DES and SIDIS Pawel Nadel-Turonski Jefferson Lab, Newport News, VA EICC meeting, January 10–12, 2010, Stony.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up Carsten Schwarz p e - coolerdetector High Energy Storage.
The RICH Detectors of the LHCb Experiment Carmelo D’Ambrosio (CERN) on behalf of the LHCb RICH Collaboration LHCb RICH1 and RICH2 The photon detector:
HARP measurements of pion yield for neutrino experiments Issei Kato (Kyoto University) for the HARP collaboration Contents: 1.HARP experiment Physics motivations.
1 Participation of the Joint Institute for Nuclear Research (Dubna) in PANDA experiment at Future GSI Facility Nuclear Structure Physics Physics with Antiprotons.
FSC Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA Russia workshop, ITEP 27 April 2010.
Muon detection in NA60  Experiment setup and operation principle  Coping with background R.Shahoyan, IST (Lisbon)
Scan ~100 bar entry positions with laser diode measures transmitted intensity (relative to reference intensity) determine attenuation length (Λ) by aiming.
Goals of future p-pbar experiment Elmaddin Guliyev Student Seminar, KVI, Groningen University 6 November 2008.
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
Radia Sia Syracuse Univ. 1 RICH 2004 Outline:  The CLEO-III RICH Detector  Physics Requirements  CLEO-III RICH at work… Performance of the CLEO-III.
Particle Identification with the LHCb Experiment
1 Limitations in the use of RICH counters to detect tau-neutrino appearance Tord Ekelöf /Uppsala University Roger Forty /CERN Christian Hansen This talk.
Detector Here, we will only discuss a multi-purpose high-luminosity ep detector, not a dedicated lower-luminosity ep/eA detector as.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
Some thoughts to stimulate Discussion E.C. Stony Brook, January
Peculiarities of the PANDA experimental setup Overview of the PANDA detector Particle Tracking: PANDA MVD Particle Identification: PANDA DIRCs Particle.
A Barrel DIRC using radiator plates AntiProton ANnihilations at DArmstadt Study of QCD with Antiprotons Charmonium Spectroscopy Search for Exotics Hadrons.
E.C. AschenauerEIC INT Program, Seattle Week 81.
Tracker Neutron Detector: INFN plans CLAS12 Central Detector Meeting - Saclay 2-3 December 2009 Patrizia Rossi for the INFN groups: Genova, Laboratori.
FARICH status E.A.Kravchenko Budker INP, Novosibirsk, Russia.
PhD thesis: Simulation & Reconstruction for the PANDA Barrel DIRC Official name: Open charm analysis tools Supervisor: Prof. Klaus Peters Maria Patsyuk.
Particle Identification (PID) at HIEPA Experiment
The Compact Muon Solenoid Detector
How to detect protons from exclusive processes
Plans for nucleon structure studies at PANDA
Software Development for the PANDA Barrel DIRC
Ion-Side Small Angle Detection Forward, Far-Forward, & Ultra-Forward
LHCb Particle Identification and Performance
T. Bowcock University of Liverpool For the LHCb Collaboration
Particle Identification with the LHCb Experiment
High-pT Identified Charged Hadrons in √sNN = 200 GeV Au+Au Collisions
Presentation transcript:

C. Schwarz Physics with Antiprotons - Detector - Detector requirements Overview of the detector concept Selected detector components Simulations

C. Schwarz Detector requirements (simulations) Energy release of charmed hadrons high → large p trans → large angles High cm-velocity (fixed target) → high energies → small angles Formation of Ψ’ and decay in muons Ψ’→μ + μ - Ψ’→J/Ψ + X ↓ μ + μ - electrons similar → calorimeter for large angles.

C. Schwarz Detector requirements (PID) Forward angles need π/K separation up to 3 GeV/c: Cherenkov n=1.02 Backward: higher value of n. p+p → ΦΦ→ 4K s ½ =3.6 GeV

C. Schwarz Overview of detector concept internal target forward spectrometertarget spectrometer Heavy charmed mesons decay in light products with large p t. Solenoid is important. top view

C. Schwarz Overview of detector concept side view

C. Schwarz Central tracking: Microvertex Detector 7.2 mio. barrel pixels 50 x 300 μm 2 mio. forward pixels 100 x 150 μm beam pipe pellet pipe Readout: ASICs (ATLAS/CMS) 0.37% X 0 or pixel one side – readout other side (TESLA)

C. Schwarz MVD single track resolution (Geant 4) σ D0 =51 μm σ Z0 =82 μm x y z D0D0 Z0Z0 p 8.5 GeV 2π + 2π - Vertex resolution is sufficient for D-physics c  (D  ) = 314 μm, c  (D 0 ) = 124 μm

C. Schwarz TS momentum resolution (Geant 4) MVD straw tubes MDC pp(  s = 4.4 GeV/c 2 )  J/  σ M = 1.2% ???

C. Schwarz Particle identification PID from 0 0 <Θ<5 0 hadronic calorimeter 5 0 <Θ<22 0 Aerogel Cherenkov Counters 22 0 <Θ<140 0 DIRC DIRC thickness: 0.19 X 0

C. Schwarz B = 0 Tesla: Cherenkov opening angle: Internal reflection → different vel. thresholds DIRC PID B = 2 Tesla: Azimuthal deflection → more homogeneous detection efficiency

C. Schwarz DIRC PID (Geant4) p p(  s = 3.6 GeV/c 2 )    misidentification of π as K K efficiency PID+tracking

C. Schwarz Calorimeter PbWO 4 Length = 17 X 0 APD readout (in field) σ(E) = 1.54% / E ½ + 0.3% pp  J/Ψ + η γγ 140 o 5o5o 22 o

C. Schwarz e ± /π ± sep. electron/pion separation  p (GeV/c) 0 E dep (GeV/c) e +/- π+π+ 2468p (GeV/c) π + probability

C. Schwarz Pellet target Frozen hydrogen pellets 20-40μm Δx=±1 mm (±0.04 o ) 60 m/s pellets/sec atoms/cm 2 (avg.) 1 mm