Processing: zero-offset gathers

Slides:



Advertisements
Similar presentations
The Seismic Method Lecture 5 SLIDE 1
Advertisements

Tom Wilson, Department of Geology and Geography Environmental and Exploration Geophysics II tom.h.wilson Department of Geology.
Seismic Reflection Processing Illustrations The Stacking Chart and Normal Moveout Creating a seismic reflection section or profile requires merging the.
Velocity Analysis Introduction to Seismic ImagingERTH 4470/5470 Yilmaz, ch
Accommodation space, Coluvial wedge. Even in this image, throw is hard to interpret however, there is still geologic insight to be gained. Surface expression.
8. Ocean Crustal Structure and Seismic Reflection William Wilcock (via Michelle W.) OCEAN/ESS 410.
Reflection Seismic Processing
Seismic Reflection Ground Roll Filtering Ted Bertrand SAGE 2004.
Stacked sections are zero offset sections
GG450 April 22, 2008 Seismic Processing.
Environmental and Exploration Geophysics II tom.h.wilson Department of Geology and Geography West Virginia University Morgantown,
I. Basic Techniques in Structural Geology
Fundamentals Introduction Seismic waves: Propagation Velocity and Amplitudes Seismogram Measurement systems Sources, receivers, Acquisition strategies.
SOES6004 Data acquisition and geometry
Occurs when wave encounters sharp discontinuities in the medium important in defining faults generally considered as noise in seismic sections seismic.
Loading of the data/conversion Demultiplexing Editing Geometry Amplitude correction Frequency filter Deconvolution Velocity analysis NMO/DMO-Correction.
Reflection Field Methods
Basic Seismic Processing INPUT FILTER CMP Gather NMO STACK MIGRATE DISPLAY GEOM VEL ANAL STATICS MUTE.
Filters  Temporal Fourier (t f) transformation  Spatial Fourier (x k x ) transformation applications  f-k x transformation  Radon (-p x ) transformation.
GG 450 April 16, 2008 Seismic Reflection 1.
Stacking  Statics  Residual statics in combination with the velocity analysis  Muting  Approximated zero offset section.
Tom Wilson, Department of Geology and Geography Environmental and Exploration Geophysics II tom.h.wilson Department of Geology.
Seismic reflection Ali K. Abdel-Fattah Geology Dept.,
The ray parameter and the travel-time curves P flat and P radial are the slopes of the travel time curves T-versus-X and T-versus- , respectively. While.
Geology 5660/6660 Applied Geophysics 18 Feb 2014 © A.R. Lowry 2014 For Wed 20 Feb: Burger (§ ) Last Time: Reflection Data Processing Step.
5. Seismology William Wilcock OCEAN/ESS 410. A. Earthquake Seismology.
Seismic Reflection Data Processing and Interpretation A Workshop in Cairo 28 Oct. – 9 Nov Cairo University, Egypt Dr. Sherif Mohamed Hanafy Lecturer.
Last week’s problems a) Mass excess = 1/2πG × Area under curve 1/2πG = × in kgs 2 m -3 Area under curve = -1.8 ×10-6 x 100 m 2 s -2 So Mass.
Tom Wilson, Department of Geology and Geography Environmental and Exploration Geophysics II tom.h.wilson Department of Geology.
Seismic reflections. Seismic waves will be reflected at “discontinuities” in elastic properties A new ray emerges, heading back to the surface Energy.
Introduction to Deconvolution
Migration In a Nutshell Migration In a Nutshell Migration In a Nutshell D.S. Macpherson.
Tom Wilson, Department of Geology and Geography Environmental and Exploration Geophysics II tom.h.wilson Department of Geology.
The main instrument used is called the sonde. A basic sonde consists of a source and two receivers one-foot apart. The sonde is lowered down the borehole.
Tom Wilson, Department of Geology and Geography Environmental and Exploration Geophysics II tom.h.wilson Department of Geology.
EXPLORATION GEOPHYSICS. EARTH MODEL NORMAL-INCIDENCE REFLECTION AND TRANSMISSION COEFFICIENTS WHERE:  1 = DENSITY OF LAYER 1 V 1 = VELOCITY OF LAYER.
Tom Wilson, Department of Geology and Geography Environmental and Exploration Geophysics II tom.h.wilson Department of Geology.
Lee M. Liberty Research Professor Boise State University.
Introduction to Seismology
Environmental and Exploration Geophysics II tom.h.wilson Department of Geology and Geography West Virginia University Morgantown, WV.
T 2 = T X 2 /V 2. It is a hyperbola with apex at X = 0 and T 0 = 2H/V. – –V and H are the layer velocity and thickness. T 2 -X 2 plot is a straight.
Reflection seismograms
Introduction to Seismic Reflection Imaging References: J.M. Reynolds, An Introduction to Applied and Environmental Geophysics, John Wiley & Sons,
Environmental and Exploration Geophysics II tom.h.wilson Department of Geology and Geography West Virginia University Morgantown,
Geology 5660/6660 Applied Geophysics Last time: The Refraction Method Cont’d Multiple Horizontal Layers: Using Snell’s law, generalizes simply to: Dipping.
1 Geophysical Methods Data Acquisition, Analysis, Processing, Modelling, Interpretation.
Lee M. Liberty Research Professor Boise State University.
Geology 5660/6660 Applied Geophysics 12 Feb 2016
Seismic Methods Geoph 465/565 Vertical Seismic Profiling– Nov 2, 2015
Geology 5660/6660 Applied Geophysics 10 Feb 2016 © A.R. Lowry 2016 Last Time: Seismic Reflection Travel-Time Cont’d Dix Equations for multiple layers:
Lee M. Liberty Research Professor Boise State University.
Seismic Methods Geoph 465/565 ERB 5104 Lecture 7 – Sept 16, 2015
I. Basic Techniques in Structural Geology Field measurements and mapping Terminology on folds and folds Stereographic projections From maps to cross-sections.
Geology 490M 3D Seismic Workshop tom.h.wilson Department of Geology and Geography West Virginia University Morgantown, WV Demo, Wave.
Stacked sections are zero offset sections
Seismic Refraction Interpretation
I. Basic Techniques in Structural Geology
Single fold vs. Multi-fold CMP seismic profiling
Reflection velocity analysis
Applied Geophysics Fall 2016 Umass Lowell
SEISMIC DATA GATHERING.
Environmental and Exploration Geophysics II
Marine Reflection Seismology - Geometry
From Raw Data to an Image
Making CMP’s From chapter 16 “Elements of 3D Seismology” by Chris Liner.
Common MidPoint (CMP) Records and Stacking
—Based on 2018 Field School Seismic Data
Processing and Binning Overview
EXPLORATION GEOPHYSICS
Normal Incidence (coincident source-receiver) Ray-Tracing
Presentation transcript:

Processing: zero-offset gathers The simplest data collection imaginable is one in which data is recorded by a receiver, whose location is the same as that of the source. This form of data collection is referred to as zero-offset gathers. Advantage: Easy to interpret. Disadvantage: Impractical. Why?

Processing: common shot gathers Data collection in the form of zero-offset gathers is impractical, since very little energy is reflected by normal incidence. Thus, the signal-to-noise ratio is small. Seismic data is always collected in common shot gathers, i.e. multiple receivers are recording the signal originating from a single shot.

Processing: common midpoint gathers Common midpoint gathers: Regrouping the data from multiple sources such that the mid-points between the sources and the receivers are the same.

Processing: common depth gather For a horizontal flat layer on top of a half-space, the common mid-point gather is actually a common depth gather. In that case, the half offset between the shot and the receiver is located right above the reflector. (Next you will see that this is a very logical way of organizing the data.)

Processing: normal moveout correction Step 1: The data is organized into common mid-point gathers at each mid-point location. Step 2: Coherent arrivals are identified, and a search for best fitting depth and velocity is carried out.

Processing: normal moveout correction Step 3: The arrivals are aligned in a process called normal moveout correction (NMO), and the aligned records are stacked. If the NMO is done correctly, i.e. the velocity and depth are chosen correctly, the stacking operation results in a large increase of the coherent signal-to-noise ratio.

Processing: plotting the seismic profile The next step is to plot all the common mid-point stacked traces at the mid-point position. This results in a zero-offset stacked seismic section. At this stage, the vertical axis of the profile is in units of time (and not depth).

Processing The above section may be viewed as an ensemble of experiments performed using a moving zero-offset source-receiver pair at each position along the section. In summary, in reflection seismology, the incidence angle is close to vertical. This results in a weak reflectivity and small signal-to-noise ratio. To overcome this problem we perform normal moveout corrections followed by trace stacking. This results in a zerro-offset stack.

Processing: additional steps Additional steps are involved in the processing of reflection data. The main steps are: Editing and muting Gain recovery Static correction Deconvolution of source The order in which these steps are applied is variable.

Processing Editing and muting: Remove dead traces. Remove noisy traces. Cut out pre-arrival nose and ground roll. Gain recovery: “turn up the volume” to account for seismic attenuation. Accounting for geometric spreading by multiplying the amplitude with the reciprocal of the geometric spreading factor. Accounting for anelatic attenuation by multiplying the traces by expt, where  is the attenuation constant.

Processing: static (or datum) correction Time-shift of traces in order to correct for surface topography and weathered layer. Corrections: where: Es is the source elevation Er is the receiver elevation Ed is the datum elevation V is the velocity above the datum

Processing: static (or datum) correction An example of seismic profile before (top) and after (bottom) the static correction.

Processing: deconvolution of the source Seismograms are the result of a convolution between the source and the subsurface reflectivity series (and also the receiver). Mathematically, this is written as: where the operator denotes convolution. In order to remove the source effect, one needs to apply deconvolution: where the operator denotes deconvolution. source wavelet reflectivity series output series

Processing: deconvolution of the source Seismic profiles before (top) and after (bottom) the deconvolution. Note that the deconvolved signal is spike-like.

Processing: 3D reflection The 3D reflection experiments came about with the advent of the fast computers in the mid-1980’s. In these experiments, geophones and sources are distributed over a 2D ground patch. For example, a 3D reflectivity cube of data sliced horizontally to reveal a meandering river channel at a depth of more than 16,000 feet.

Processing: inclined interface The reflection point is right below the receiver if the layer is horizontal. For an inclined layer, on the other hand, the reflection bounced from a point up-dip. Thus the travel-time curve will show a reduced dip.

Processing: curved interface A syncline with a center of curvature that is located below the surface results in three normal incidence reflections.

Processing: migration Reflection seismic record must be corrected for non-horizontal reflectors, such as dipping layers, synclines, and more. Migration is the name given to the process which attempts do deal with this problem, and to move the reflectors to their correct position. The process of migration is complex, and requires prior knowledge of the seismic velocity distribution.