Industrial Microbiology

Slides:



Advertisements
Similar presentations
Applied and Industrial Microbiology
Advertisements

Microorganisms & Food Production
ABBOTTS BIOTECHNOLOGY.
Industrial Microbiology
BIOTECHNOLOGY Any technological process that uses living things to make or modify products or processes.
Applied and Industrial Microbiology
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation prepared by Christine L. Case M I C R.
Medical Technology Department, Faculty of Science, Islamic University-Gaza MB M ICRO B IOLOGY Dr. Abdelraouf A. Elmanama Ph. D Microbiology 2008 Chapter.
Applied and Industrial Microbiology
Key Area 6 : Growth in Micro-organisms
Production Of Enzymes By Fermentation Method
The role of fermentation of carbohydrates in the making of alcoholic drinks Lucia Sangenis.
Biotechnology practical course Second Year Clinical.
Microbial Growth Kinetics
AN INTRODUCTION TO FERMENTATION PROCESS. Conversion of sugar to alcohol using yeast.sugaralcoholyeast Chemical conversion of carbohydrates into alcohols.
Industrial Microbiology – Introduction and Overview
F215 control, genomes and environment
Introduction to Lab 6: Ex. Preparation of Culture Media
Microbial Biotechnology Microorganisms – Organisms that are too small to be seen without a microscope – Include: bacteria, fungi, protozoa, microalgae,
FERMENTATION BY: Ms. Saba Inayat Ali.
Biochemistry Class Nine. Macromolecules Microorganisms and their Identification Determination of pathogens responsible for infectious diseases Selection.
Biotechnology – Biotechnological techniques 1.Use of micro-organisms 2.Industrial production of enzymes 3.Tissue cultures.
Microbiology Part 1 -- Microbiology & Immunology
FERMENTATION.
15.1 Industrial Products and the Microorganisms That Make Them Industrial microbiology –Uses microorganisms, typically grown on a large scale, to produce.
Microbial Biotechnology Commercial Production of Microorganism
Industrial Microorganisms and Product Formation
Microbiology and Organisms in Industry
Industrial Microbiology Products Cells Bioconversion Cells products Fungi (Yeasts) Streptomyces.
FERMENTATION.
Microbial Biotechnology Products from Microorganisms LECTURE 12: Biotechnology; 3 Credit hours Atta-ur-Rahman School of Applied Biosciences (ASAB) National.
MICROBES CAN MAKE USEFUL PRODUCTS
Chpt. 12: Respiration. Two types of respiration External Respiration Internal respiration -is the process by which - is the controlled organisms exchange.
Living Factories Biotechnology SG Biology. Learning Outcomes 1 State that the raising of dough and the manufacture of beer and wine depend on the activities.
Bacterial growth:. Bacterial Growth Curve: The schematic growth curve shown below is associated with simplistic conditions known as a batch culture. It.
Biotechnology – Use of Microbes
4.4 Microbiology. Classifying Bacteria - shape According to shape Coccus -plural Cocci Bacillus -plural Bacilli Spirillum – plural Spirilli.
Title: The growth curve Homework: complete learning package 1214 January 2016.
Copyright © 2010 Pearson Education, Inc. Food microbiology  MIC 204.
Bacterial Fermentation
Metabolites – primary and secondary. Learning Outcomes Compare and contrast the processes of continuous culture and batch culture. Describe the differences.
Beneficial Uses of Microorganisms. Objective Criteria for the microbes Classification of microbes, example, uses.
F Biotechnology By Ms Cullen. What is biotechnology? Can also be known as biotech. Refers to any technological or industrial use of organisms.
BSE222A/341: Biochemical Engineering
Title: Biotechnology basics Homework: read pages and make notes for Thursday.
Application of enzymes. Why use enzymes? Properties of enzymes: Very sensitive – can measure tiny concentrations of substances Specific – will only respond.
Application of enzymes Specification ref: Text book ref:- Chapter 7 Page 113.
Industrial Microorganisms and Product Formation
Microbiology Industrial Microbes.
Classical Biotechnology
AN INTRODUCTION TO FERMENTATION PROCESS
GENERAL METHODS OF STUDYING
INDUSTRIAL MICROBIOLOGY Dr. TERESA FERNÁNDEZ ALDAMA
Prof. Dr. Ir. Sri Kumalaningsih, M.App.Sc
Prof. Karkaz M. Thalij. PhD
Food microbiology MIC 204.
BIOTECHNOLOGY Any technological process that uses living things to make or modify products or processes.
MICROORGANISM AND FERMENTED FOOD PRODUCT
Strain choice and Improvement Mass Culture
Biotechnology Living Factories G Davidson.
Lecture 15 PRODUK MIKROBIOLOGI DI BIDANG FARMASI
Applied and Industrial Microbiology
TEKNOLOGI FERMENTASI 11/13/2018.
Agenda 3/6 and 3/7 Microbiology in industry notes Homework
Environmental control of metabolism
Dough and batter ingredients: Yeasts and chemical leavenings
INTRODUCTION TO SOLID STATE FERMENTATION AND SUBMERGED FERMENTATION
Production of penicillin
Learning Outcomes By the end of this lesson: Define respiration
Presentation transcript:

Industrial Microbiology CHAPTER 30 Industrial Microbiology

Industrial Microorganisms and Product Formation   Industrial Microorganisms and Their Products

Industrial microbiology uses microorganisms, typically grown on a large scale, to produce valuable commercial products or to carry out important chemical transformations. The actual reactions carried out by microorganisms in industrial microbiology are called biocatalysis (Figure 30.1).

An industrial microorganism must produce the product of interest in high yield; grow rapidly on inexpensive culture media available in bulk quantities; be amenable to genetic manipulation; and, if possible, be nonpathogenic. There are many industrial products, including both cells and substances made by cells. Commodity chemicals are inexpensive chemicals produced in bulk, including ethanol, citric acid, and many others.

Primary and Secondary Metabolites Primary metabolites are produced during active cell growth, and secondary metabolites are produced near the onset of stationary phase (Figure 30.2).

Figure 30.3 shows the interrelationship of the main primary metabolic pathway for aromatic amino acid synthesis and the secondary metabolic pathways for a variety of antibiotics.

Many economically valuable microbial products are secondary metabolites.

Characteristics of Large-Scale Fermentations Large-scale industrial fermentation presents several engineering problems. Aerobic processes require mechanisms for stirring and aeration.

The microbial process must be continuously monitored to ensure satisfactory yields of the desired product.

Industrial fermentors can be divided into two major classes, those for anaerobic processes and those for aerobic processes (Figure 30.4).

Table 30.1 shows fermentor sizes for various industrial processes.

Fermentation Scale-Up Fermentation scale-up is the process of gradually converting a useful industrial fermentation from laboratory scale to production scale. Aeration is a particularly critical aspect to monitor during scale-up studies.

Major Industrial Products for the Health Industry  Antibiotics: Isolation and Characterization

The industrial production of antibiotics begins with screening for antibiotic producers (Figure 30.7).

Once new producers are identified, purification (Figure 30 Once new producers are identified, purification (Figure 30.8) and chemical analyses of the antimicrobial agent are performed.

If the new antibiotic is biologically active in vivo, the industrial microbiologist may genetically modify the producing strain to increase yields to levels acceptable for commercial development.

Industrial Production of Penicillins and Tetracyclines

Major antibiotics of clinical significance include the -lactam antibiotics penicillin (Figure 30.9) and cephalosporin and the tetracyclines (Figure 30.11).

Cephalosporins are valued clinically not only because of their low toxicity but also because they are broad-spectrum antibiotics, useful against a wide variety of bacterial pathogens.

Figure 30.10 shows the kinetics of the penicillin fermentation with Penicillium chrysogenum.

If the penicillin fermentation is carried out without addition of side-chain precursors, the natural penicillins are produced. The fermentation can be more directed by adding to the broth a side-chain precursor so that only one desired penicillin is produced.

The product formed under these conditions is referred to as a biosynthetic penicillin. To produce the most useful penicillins, those with activity against gram-negative Bacteria, a combined fermentation and chemical approach is used that leads to the production of semisynthetic penicillins. All of these antibiotics are typical secondary metabolites, and their industrial production is well worked out despite the fact that the biochemistry and genetics of their biosynthesis are only partially understood.

Vitamins and Amino Acids Vitamins produced microbially include vitamin B12 and riboflavin (Figure 30.12).

The most important amino acids produced commercially are glutamic acid, aspartic acid, phenylalanine, and lysine (Figure 30.13).

Aspartic acid and phenylalanine are the ingredients of the artificial sweetener aspartame, a non-nutritive sweetener of diet soft drinks and other foods sold as low-calorie or sugar-free products.

High yields of amino acids are obtained by modifying regulatory signals that control synthesis of the particular amino acid such that overproduction occurs.

Table 30.3 lists amino acids used in the food industry.

Steroids and the Biotransformation Process Microbial biotransformation employs microorganisms to biocatalyze a specific step or steps in an otherwise strictly chemical synthesis (Figure 30.14).

Enzymes as Industrial Products Microorganisms are ideal for the large-scale production of enzymes. Many enzymes are used in the laundry industry to remove stains from clothing, and thermostable and alkalistable enzymes have many advantages in these markets.

Certain enzymes are produced in large amounts by some organisms, and instead of being held within the cell, they are excreted into the medium. These extracellular enzymes, called exoenzymes, can digest insoluble polymers such as cellulose, protein, and starch. The products of digestion are then transported into the cell where they are used as nutrients for growth.

The term extremozyme has been coined to describe enzymes that function at some environmental extreme, such as high temperatures or low pH (Figure 30.15). Enzymes from extremophiles are desirable for biocatalyses under extreme conditions.

For some biocatalytic processes, it is desirable to fix soluble enzymes onto a solid surface. These are called immobilized enzymes (Figure 30.16).

Table 30.4 lists microbial enzymes and their applications.

Major Industrial Products for the Food and Beverage Industries Alcohol and Alcoholic Beverages

Alcoholic beverages are produced by yeast from the fermentation of sugar to ethyl alcohol and CO2.Wine is produced from grape juice (Figure 30.18), beer from fermentation of malted grain (brewing), and distilled beverages from the distillation of fermented solutions.

Commodity alcohol is used as a gasoline additive and industrial solvent.

Vinegar Production The active ingredient in vinegar is acetic acid, which is produced by acetic acid bacteria oxidizing an alcohol-containing fruit juice (Figure 30.22).

Adequate aeration is the most important consideration in ensuring a successful vinegar process.

Figure 30.23 is a diagram of a vinegar generator.

Citric Acid and Other Organic Compounds A number of organic chemicals are produced commercially by use of microorganisms, of which the most important economically is citric acid, produced by Aspergillus niger (Figure 30.24).

Yeast as a Food and Food Supplement Yeast cells are grown for use in the baking and food industries (Table 30.5).

Commercial yeast is produced in large-scale aerated fermentors using molasses as the main carbon and energy source (Figure 30.25).

Mushrooms as a Food Source The most important food produced from a microorganism is the mushroom, which is produced not for its protein but for its flavor.