Goal: To learn about Forces

Slides:



Advertisements
Similar presentations
Forces and Newton’s Laws of Motion Chapter 4. All objects naturally tend to continue moving in the same direction at the same speed. All objects resist.
Advertisements

The Law of Inertia. Objects at rest remain at rest unless acted upon by an outside force. Objects in motion will remain in motion unless acted upon by.
Normal Force Force on an object perpendicular to the surface (Fn)
Chapter 4 Forces.
5. Using Newton’s Laws. Newton’s Third Law 3 Law of Action and Reaction Forces always occur in equal and opposite pairs A B A acts on B B acts on A.
L-6 – Newton's Second Law Objects have a property called inertia which causes them to resist changes in their motion (Newton’s1st Law or Galileo’s law.
“ If I have seen farther than others, it is because I have stood on the shoulders of giants.” Sir Isaac Newton (1642 – 1727) Physicist.
Applications of Newton’s Laws
Forces and the Laws of MotionSection 4 Click below to watch the Visual Concept. Visual Concept Everyday Forces.
Newton’s Laws of Motion. HFinks '072 6/2/2015 Basic Concepts  Force – push or pull on an object - Vector quantity  Mass – amount of matter in a body.
Newton’s 3rd Law of Motion By: Heather Britton. Newton’s 3rd Law of Motion Newton’s 3rd Law of Motion states Whenever one object exerts a force on a second.
NEWTON'S LAWS OF MOTION There are three of them.
Chapter everyday forces.
Force Chapter 6. Force Any push or pull exerted on an object.
Forces in Two Dimension
Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical.
Unit 2 1D Vectors & Newton’s Laws of Motion. A. Vectors and Scalars.
EVERY-DAY FORCES Force of gravity Normal force Force of friction Universal force of gravity.
Warmup.
Newton’s Laws of Motion Now that we have learned how to describe motion, how do we cause the motion that we want? We apply forces on an object! But what.
Newton’s Laws of Motion 1. If the sum of all external forces on an object is zero, then its speed and direction will not change. Inertia 2. If a nonzero.
Newton’s Second Law of Motion. Force and Acceleration Force is a push or a pull acting on an object. Acceleration occurs when the VELOCITY of an object.
CHAPTER 4 The Laws of Motion Newton’s First Law: Newton’s First Law: An object at rest remains at rest and an object in motion continues in motion with.
Chapter 4 Dynamics: Newton’s Laws of Motion. Units of Chapter 4 Force Newton’s First Law of Motion Mass Newton’s Second Law of Motion Newton’s Third Law.
Forces and Newton’s Laws of Motion. 4.1 The Concepts of Force and Mass A force is a push or a pull. Arrows are used to represent forces. The length of.
Chapter 4 Dynamics: Newton’s Laws of Motion
Chapter 4 Dynamics: Newton’s Laws of Motion. Units of Chapter 4 Force Newton’s First Law of Motion Mass Newton’s Second Law of Motion Newton’s Third Law.
 Isaac Newton  Smart Guy  Liked Apples  Invented Calculus  Came up with 3 laws of motion  Named stuff after himself.
Forces. Force – a push or a pull Contact – a force acting on a body by touching it Long-range – force exerted on a body w/o contact (gravity, magnetic.
Remember!!!! Force Vocabulary is due tomorrow
Introduction to Newton’s Laws
Friction Friction Problem Situations. Friction Friction F f is a force that resists motion Friction involves objects in contact with each other. Friction.
QotD Make a list of what types of forces we have on Earth?
Advanced Physics Chapter 4 Motion and Force: Dynamics.
Chapter 4 The Laws of Motion. Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting.
Friction Ffriction = μFNormal.
Chapter 4 Forces and the Laws of Motion. Changes in Motion When we think of Force, we typically imagine a push or pull exerted on an object. When we think.
Section 4–4: Everyday Forces Coach Kelsoe Physics Pages 135–143.
Friction. Biblical Reference And they pulled him up with the ropes and lifted him out of the cistern. Jeremiah 38:13.
The tendency of objects to resist change in their state of motion is called inertia  Inertia is measured quantitatively by the object's mass.  Objects.
 Force: A push or a pull Describes why objects move Defined by Sir Isaac Newton.
Forces and the Laws of Motion
Force Chapter 6. Force Any push or pull exerted on an object.
Basic Information: Force: A push or pull on an object Forces can cause an object to: Speed up Slow down Change direction Basically, Forces can cause an.
Chapter 5 Two Dimensional Forces Equilibrium An object either at rest or moving with a constant velocity is said to be in equilibrium The net force acting.
Sir Isaac Newton (1642 – 1727) Physicist
Dynamics: Newton’s Laws of Motion. Force A force is a push or pull. An object at rest needs a force to get it moving; a moving object needs a force to.
Push and Pull Newton’s Laws. Newton’s First Law An object at rest remains at rest, and an object in motion continues in motion with constant velocity.
CP Physics Chapter 4 Newton’s Laws Force Force (F) is a push or a pull Measured in Newtons (N) for SI, pounds (lb) in US. (4.45 N = 1 lb) It has magnitude.
Chapter 4 Dynamics: Aim: How can we describe Newton’s Laws of Motion? © 2014 Pearson Education, Inc.
Forces and the Laws of Motion Chapter 4. Forces and the Laws of Motion 4.1 Changes in Motion –Forces are pushes or pullss can cause acceleration. are.
Lesson 4.4 Everyday Forces Essential Question: What are some of the everyday forces?
Chapter 4 Dynamics: Newton’s Laws of Motion. Units of Chapter 4 Force Newton’s First Law of Motion Mass Newton’s Second Law of Motion Newton’s Third Law.
Lecture 6 Newton’s Laws of Motion. Exam #1 - next Thursday!  20 multiple-choice problems - No notes allowed; equation sheet provided - A calculator will.
Physics Section 4.4 Describe various types of forces Weight is a measure of the gravitational force exerted on an object. It depends upon the objects.
CHAPTER 4 The Laws of Motion Newton’s First Law: Newton’s First Law: An object at rest remains at rest and an object in motion continues in motion with.
Weight = mass x acceleration due to gravity
PHY 151: Lecture Forces of Friction 5.9 Newton’s Second Law.
Physics Section 4.4 Describe various types of forces Weight is a measure of the gravitational force exerted on an object. It depends upon the objects.
Physics and Forces Dynamics Newton’s Laws of Motion  Newton's laws are only valid in inertial reference frames:  This excludes rotating and accelerating.
The Laws of Motion. Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Describes.
Dynamics: Newton’s Laws of Motion
Forces and Newton’s Laws of Motion
Forces.
Or Trust in the Force Luke/Ani
Newton’s Laws Forces and Motion.
Refresher: *Acceleration is only caused by an unbalanced net force acting on an object. F = ma F = F1 + F2 + … *The weight of an object is referred to.
Newton’s Laws of Motion
Chapter 4 Newton’s Laws.
The Laws of Motion (not including Atwood)
Presentation transcript:

Goal: To learn about Forces Objectives: To explore the basics of force and Newton’s first law To learn about weight and compare to mass To learn about the Normal force To learn about frictional force To learn about Tension To learn about force vectors and net force

Newton’s First Law An object in rest or in motion will stay in rest or in motion until acted upon by an outside force This is called the law of inertia In other words, to change an objects motion (and you can consider at rest a “motion”) you have to do something to it

Force There are many different forces in the universe. The main 4 are: A) Gravity B) Electromagnetic C) Strong D) Weak

Force is a VECTOR Force is a vector Force has DIRECTION! Force ALWAYS has direction So, the units of force are Newton direction Newton is N So, a force could be +3 N up, +2 N down, -12.3 N forward, +72.8 N north, ect

Something we will look at in this class: Gravity near the surface of the Earth. Near the surface of the Earth the force of gravity is fairly straightforward Gravity force = mg If there are no other vertical forces (other than a Normal force) then the gravity force is the Weight Note that Weight is a FORCE

Questions 1) What is the unit(s) of Weight? 2) g = 9.8 m/s2 does it have a direction?

Weight vs Mass On the Earth I have a mass of about 90 kg and a weight of about 205 lbs (880 Newtons). On the moon gravity is 1/6th what it is on the earth. What is my mass and weight on the moon?

Normal Force Anytime you contact something there is a Normal Force (Newton’s 3rd law, equal and opposite force) The normal force is the force that pushes you away from a surface and is perpendicular to the plane of that surface. What would happen if you stood on a surface that had no normal force?

How to find the normal force Find the sum of all the non normal forces. If the object is not moving in the vertical direction (that means there is no total force – which we call a net force) then the normal force is the force needed to cancel out all the other forces. So, if there is just gravity, then the normal force is equal to the weight. If I pull up on something then the normal is less because the total downward force (and up force is effectively a negative down) is less. If I push down then the normal force increases.

Friction One force you are probably familiar with is friction. Friction is always a force that opposes motion – that is the direction is opposite the direction of motion. There are actually two type of frictional forces. The first is called Static Friction

Static Friction Static Friction is caused because on a microscopic level nothing is perfectly smooth. The bumps and pits of the two objects touching makes things rub and rip off small pieces. This takes energy to do which causes the static friction.

Kinetic Friction Once an object starts to slide across another object it now glides over the top of the bumps and pits. As a result the force of friction is cut in half. A tire is stationary on the ground normally. If a tire slides you loose friction and you loose control.

Friction Equation F = μ N I am 90 kg. I walk down a sidewalk which has a frictional coefficient of 0.2 A) Find my normal force B) What is the frictional force on me C) What force do my legs need to exert to keep myself walking at a constant velocity and how do you use Newton’s First Law to determine this?

Tension Forces provided by strings or wires are called Tensions. The Tension in a wire is similar to the normal force except that it pulls an object towards it instead of pushing away. To find tension either: A) compare the total force to all the forces exerted on the string. The difference will be the tension of the string. B) find the force the string is exerting on something else

Tension example A 10 kg mass is tied to the end of a string and allowed to hang. A person pulls down on the string with a force of 150 N. A) What is the tension of the string if the mass does not move (Hint, Newton’s first law)?

Force Vectors In reality forces will often times have components in more than 1 dimension. This creates a vector. In order to solve for problems where you have forces in more than 1 dimension you need to create 2 accounts, that is 2 problems that are separate from one another. This is similar to having a checking account and a savings account.

Calculator note Everyone use their calculators to find the answer to the following problem (even if you can do this one in your head): (2 * 6) / (3 * 4)

Vector Break down Since the 2 components will be 90 degrees from each other you can use the following to find each component. Lets call the total force Ft The opposite leg in our right triangle has a length of: Ft sin(theta) where theta is the angle Adjacent is: Ft cos(theta) Finally tan(theta) = Opposite / Adjacent

One way to remember which is which Sin(0 degrees) = 0 So, ask yourself would this value be 0 if the angle is 0? If the answer is yes then use sine Cos(0 degrees) = 1 Ask yourself, if the angle was 0 would the total force be just this force? If the answer is yes then use the cosine.

Adding Force vectors Once you break a force into its components (for this class we will often use x and y) now you are ready to add them. The x’s add to the x’s because the x direction is a UNIT! Same for the y’s because the y’s are a UNIT If you need a magnitude at the end, which you may for the homework then once you have the total x and total y you can use the Pythagorean Theorem. However, as we get further along we will treat the x and y as separate problems and may have to solve for 1 to get the other.

Net Force Once you add up all the vectors for all the forces you have what is called the Net Force The Net Force will determine how the objects motion is changed Note that the Net Force is a vector. It can have x and y components – and if any are non-zero, then its motion in that direction will change. Meanwhile in any direction that the net force is exactly zero the motion in that direction will be constant (even if the motion is zero).

Net Force Net Force = sum of all forces Net Force = mass * net acceleration For example, if you have vertical forces, and need to solve the net force, find the net force from mass * net acceleration Then, plug that answer into Net Force = sum of all forces so that you can solve for the Normal force

Your turn! The 3 Stooges decide to open a moving company and someone is crazy enough to hire them. The 3 are moving a rather large box by pushing it across the floor. Luckily the floor is slippery due to all the banana peals that…. Well that is another show. Anyhow, no friction Larry pushes on the box from behind. He pushes at an angle 30 degrees below the vertical with a force of 200 N. Curly (who has a mass of 70 kg) sits on the box. Not much help there… Mo pulls on the box at a 45 degree angle with a force of 350 N. The box has a mass of 50 kg. A) What is the net force on the box in the vertical direction (call this the y direction)? Hint, will the box lift off the ground? B) What is the normal force on the box (and no it is not = mg)? C) What is the net force on the box?

Conclusion We have learned about force. We have learned how to compute gravitational force We have learned how to find a normal force. We have learned how to use that normal force to find the frictional force We have learned how to find tension We have learned how to turn Forces into vectors and add those vectors to create a net force.