SVT INFN LNF - 28 Marzo 2007Alberto Annovi1 STARS: Supercomputers for Trigger Analysis and Real-time Selections Alberto Annovi Istituto Nazionale di Fisica.

Slides:



Advertisements
Similar presentations
Track Trigger Designs for Phase II Ulrich Heintz (Brown University) for U.H., M. Narain (Brown U) M. Johnson, R. Lipton (Fermilab) E. Hazen, S.X. Wu, (Boston.
Advertisements

The trigger1 The Trigger YETI 7th January 2008 Emily Nurse Outline: Why do we need a Trigger? The trigger system at CDF Rate control at CDF Triggering.
B Tagging with CMS Fabrizio Palla INFN Pisa B  Workshop Helsinki 29 May – 1 June 2002.
0 25. Sept 2006 M.Smizanska, Lancaster University, UK LHC preparations for precise measurements of muonic very rare B-decays 25. Sept 2006 M.Smizanska,
A Fast Level 2 Tracking Algorithm for the ATLAS Detector Mark Sutton University College London 7 th October 2005.
B triggering Fabrizio Palla INFN Pisa Consorzio CMS Italia Firenze 7 Sept
CMS High Level Trigger Selection Giuseppe Bagliesi INFN-Pisa On behalf of the CMS collaboration EPS-HEP 2003 Aachen, Germany.
The Silicon Track Trigger (STT) at DØ Beauty 2005 in Assisi, June 2005 Sascha Caron for the DØ collaboration Tag beauty fast …
The ATLAS B physics trigger
Track quality - impact on hardware of different strategies Paola FTK meeting Performances on WH and Bs   2.Now we use all the layers.
FPCP 2002, 05/16-18/2002 p. 1 Richard E. Hughes, The Ohio State UniversityCDF Run II Status Status of CDF and Prospects Flavor Physics and CP Violation.
Sept 30 th 2004Iacopo Vivarelli – INFN Pisa FTK meeting Z  bb measurement in ATLAS Iacopo Vivarelli, Alberto Annovi Scuola Normale Superiore,University.
July 7, 2008SLAC Annual Program ReviewPage 1 High-level Trigger Algorithm Development Ignacio Aracena for the SLAC ATLAS group.
The ATLAS trigger Ricardo Gonçalo Royal Holloway University of London.
Real Time 2010Monika Wielers (RAL)1 ATLAS e/  /  /jet/E T miss High Level Trigger Algorithms Performance with first LHC collisions Monika Wielers (RAL)
General Trigger Philosophy The definition of ROI’s is what allows, by transferring a moderate amount of information, to concentrate on improvements in.
Simulation Tasks  Understanding Tracking  Understanding Hardware 1.Two types of tasks: a.Implementing known functions in ATLAS framework b.Understanding.
February 19th 2009AlbaNova Instrumentation Seminar1 Christian Bohm Instrumentation Physics, SU Upgrading the ATLAS detector Overview Motivation The current.
FTK poster F. Crescioli Alberto Annovi
BEACH Conference 2006 Leah Welty Indiana University BEACH /7/06.
Tracking at the ATLAS LVL2 Trigger Athens – HEP2003 Nikos Konstantinidis University College London.
The CMS Level-1 Trigger System Dave Newbold, University of Bristol On behalf of the CMS collaboration.
W properties AT CDF J. E. Garcia INFN Pisa. Outline Corfu Summer Institute Corfu Summer Institute September 10 th 2 1.CDF detector 2.W cross section measurements.
Faster tracking in hadron collider experiments  The problem  The solution  Conclusions Hans Drevermann (CERN) Nikos Konstantinidis ( Santa Cruz)
Copyright © 2000 OPNET Technologies, Inc. Title – 1 Distributed Trigger System for the LHC experiments Krzysztof Korcyl ATLAS experiment laboratory H.
SVT June 2005Mauro Dell'Orso - Beauty SVT The CDF Silicon Vertex Trigger Beauty 2005 Mauro Dell’Orso Istituto Nazionale di Fisica Nucleare Pisa –
Technical Part Laura Sartori. - System Overview - Hardware Configuration : description of the main tasks - L2 Decision CPU: algorithm timing analysis.
Tracker in the Trigger: from CDF experience to S-CMS Fabrizio Palla INFN – Pisa Vertex 2007 Lake Placid, NY, USA.
The CDF Online Silicon Vertex Tracker I. Fiori INFN & University of Padova 7th International Conference on Advanced Technologies and Particle Physics Villa.
Il Trigger di Alto Livello di CMS N. Amapane – CERN Workshop su Monte Carlo, la Fisica e le simulazioni a LHC Frascati, 25 Ottobre 2006.
ICHEP 2002 First Heavy Flavor Results Using the Silicon Vertex Trigger A. Cerri.
Valeria Perez Reale University of Bern On behalf of the ATLAS Physics and Event Selection Architecture Group 1 ATLAS Physics Workshop Athens, May
IOP HEPP: Beauty Physics in the UK, 12/11/08Julie Kirk1 B-triggers at ATLAS Julie Kirk Rutherford Appleton Laboratory Introduction – B physics at LHC –
G. Volpi - INFN Frascati ANIMMA Search for rare SM or predicted BSM processes push the colliders intensity to new frontiers Rare processes are overwhelmed.
DPF2000, 8/9-12/00 p. 1Richard E. Hughes, The Ohio State UniversityHiggs Searches in Run II at CDF Prospects for Higgs Searches at CDF in Run II DPF2000.
1 FastTrack: Real Time Silicon Tracking for LHC Alessandro Cerri (borrowing from several talks…)
7/20/04Director's Review - SVT Upgrade1 Silicon Vertex Trigger (SVT) Upgrade J. Adelman, I. Furic, Y.K. Kim, M. Shochet, U.K. Yang (Chicago) T. Liu (Fermilab)
Alberto AnnoviFTK meeting - September 30, 2004 Ideas for a Fast-Track trigger processor - FTK... an evolution of the CDF Silicon Vertex Trigger (SVT) A.
FTKSim Status and plans FTK Meeting 07/13/2006 F. Crescioli, M. Dell'Orso, G. Punzi, G.Volpi, P. Giannetti.
ATLAS Trigger Development
SVT Nov 7, 2002Luciano Ristori - Vertex2002_7Nov02.ppt1 SVT The CDF Silicon Vertex Trigger Vertex 2002 Luciano Ristori Istituto Nazionale di Fisica Nucleare.
Richard E. Hughes 21 September 2003; p.1 IEEE/NSS 2003 Portland, OR eXtremely Fast Tracker; The Sequel Richard Hughes, Kevin Lannon Ben Kilminster, Brian.
The SVT Bypass (not for review) 1.Hardware description; 2.Possible applications; 3.Technical feasibility; 4.Hardware requirements/needs; estimate on firmware/software.
SVT April 2006Alberto Annovi- IFAE SVT L’upgrade del Silicon Vertex Trigger (SVT) di CDF IFAE 2006 Alberto Annovi Istituto Nazionale di Fisica Nucleare.
First physics results with the Silicon Vertex Trigger at CDF-II 2 nd Workshop on the CKM Unitarity triangle. April 5 th -9 th IPPP Durham, England, UK.
Performance of the ATLAS Trigger with Proton Collisions at the LHC John Baines (RAL) for the ATLAS Collaboration 1.
DØ Beauty Physics in Run II Rick Jesik Imperial College BEACH 2002 V International Conference on Hyperons, Charm and Beauty Hadrons Vancouver, BC, June.
Tommaso Boccali SNS and INFN Pisa Vertex 2002 Kailua-Kona, Hawaii 3-8 November 2002 High Level Triggers at CMS with the Tracker.
A Fast Hardware Tracker for the ATLAS Trigger System A Fast Hardware Tracker for the ATLAS Trigger System Mark Neubauer 1, Laura Sartori 2 1 University.
Performances of the upgraded SVT The Silicon Vertex Trigger upgrade at CDF J.Adelman 1, A.Annovi 2, M.Aoki 3, A.Bardi 4, F.Bedeschi 4, S.Belforte 5, J.Bellinger.
S. Donati University and INFN Pisa 9th Topical Seminar on Innovative Particle and Radiation Detectors, May , Siena, Italy The CDF Online Silicon.
The BTeV Pixel Detector and Trigger System Simon Kwan Fermilab P.O. Box 500, Batavia, IL 60510, USA BEACH2002, June 29, 2002 Vancouver, Canada.
FTK high level simulation & the physics case The FTK simulation problem G. Volpi Laboratori Nazionali Frascati, CERN Associate FP07 MC Fellow.
Tracking Triggers Fabrizio Palla INFN Pisa. F. Palla INFN Pisa The Tracker and the Trigger n Trigger rates control is extremely challenging in high luminosity.
ATLAS UK physics meeting, 10/01/08 1 Triggers for B physics Julie Kirk RAL Overview of B trigger strategy Algorithms – current status and plans Menus Efficiencies.
The LHCb Calorimeter Triggers LAL Orsay and INFN Bologna.
Off-Detector Processing for Phase II Track Trigger Ulrich Heintz (Brown University) for U.H., M. Narain (Brown U) M. Johnson, R. Lipton (Fermilab) E. Hazen,
Status of FTK Paola Giannetti INFN Pisa for the FTK Group ATLAS Italia November 17, 2009.
New AMchip features Alberto Annovi INFN Frascati.
Outline The Pattern Matching and the Associative Memory (AM)
More technical description:
First Level Trigger using Associative Memories for CMS at Super-LHC
2018/6/15 The Fast Tracker Real Time Processor and Its Impact on the Muon Isolation, Tau & b-Jet Online Selections at ATLAS Francesco Crescioli1 1University.
Overview of the ATLAS Fast Tracker (FTK) (daughter of the very successful CDF SVT) July 24, 2008 M. Shochet.
eXtremely Fast Tracker; An Overview
Kevin Burkett Harvard University June 12, 2001
Experimental Particle Physics PHYS6011 Putting it all together Lecture 4 6th May 2009 Fergus Wilson, RAL.
Experimental Particle Physics PHYS6011 Putting it all together Lecture 4 28th April 2008 Fergus Wilson. RAL.
The LHCb Level 1 trigger LHC Symposium, October 27, 2001
SVT detector electronics
Presentation transcript:

SVT INFN LNF - 28 Marzo 2007Alberto Annovi1 STARS: Supercomputers for Trigger Analysis and Real-time Selections Alberto Annovi Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati Proposal for Ideas - FP VII

SVT INFN LNF - 28 Marzo 2007Alberto Annovi2 Outline STARS Trigger: we always need more power! CDF trigger problems/upgrades/solutions More for the next future? SVT & AM could survive after CDF at both level 1 SLIM5) and level 2 (ATLAS?) other applications?

SVT INFN LNF - 28 Marzo 2007Alberto Annovi3 STARS STARS: Supercomputers for Trigger Analysis and Real-time Selections Current and future (HEP) experiments look for extremely rare processes hidden by severe background conditions. The trigger dramatically affects our ability to extract these tiny signals from the huge backgrounds. export the successful parallel CDF trigger approaches to new experiments  Challenging: competition with Farm approach New experiments need powerful exclusive, high resolution triggers! The trigger cannot be “inclusive, low resolution” any more!  very large comupting power needed  time is critical

SVT INFN LNF - 28 Marzo 2007Alberto Annovi4 Looking for very rare phenomena Hans Bethe: “Young man, if the cross section is so low, increase the luminosity collider not only the luminosity has to be increased, but also the bandwidth, the purity … From collision point all the way to PRL editors Trigger is a critical part of this process: errors cause not-recoverable losses!

SVT INFN LNF - 28 Marzo 2007Alberto Annovi5 CDFTrigger power: (1) TTT: the displaced TrkTrigger but also Terrific Tracking L1/L2 ) Run I collected O(1) B s --> D s  (all D s modes) Run II collected ~2000 B s --> D s  (D s -->  -->K + K - ]  ) Compare with only 10x integrated luminosity! The trigger had a much bigger impact than Tevatron upgrade!!! Without SVTWith SVT RUN I RUN II

The SVT advantage: 3 orders of magnitude B 0  had + had Trigger KsKs D0D0 S. Donati, M. Morello, G. Punzi, D. Tonelli, G. Volpi M hh (GeV) L3 plot 2001 SVT TDR 1995

SVT INFN LNF - 28 Marzo 2007Alberto Annovi7 SVT: many different boards  2 years for upgrade  PULSAR x12 wedges Hit Finder AM Sequencer AM Board Detector Data Hits Super Strip Matching Patterns Roads L2 CPU AM++ Hit Buffer Tracks + Corresponding Hits Roads + Corresponding Hits Track Fitter AMSRW HB++ TF++ Powerful flexible PULSARS Just add Firmware GF ++ P. Catastini et al.

SVT INFN LNF - 28 Marzo 2007Alberto Annovi8 On the opposite side: FPGA for the same AMchip P. Giannetti et al. “A Programmable Associative Memory for Track Finding”, Nucl. Intsr. and Meth., vol. A413/2- 3, pp , (1998). AM chips from 1992 to 2005 (90’s) Full custom VLSI chip  m (INFN-Pisa) 128 patterns, 6x12bit words each 32k roads / wedge F. Morsani et al., “The AMchip: a Full-custom MOS VLSI Associative memory for Pattern Recognition”, IEEE Trans. on Nucl. Sci., vol. 39, pp , (1992). In the middle: Standard Cell 0.18  m (INFN Ferrara, Pisa)  5000 pattern/chip AMchip L. Sartori, A. Annovi et al., “A VLSI Processor for Fast Track Finding Based on Content Addressable Memories”, IEEE Transactions on Nuclear Science, Volume 53, Issue 4, Part 2, Aug Page(s): NEXT: NEW VERSION For both L1 & L2

SVT INFN LNF - 28 Marzo 2007Alberto Annovi9 Muon acceptance Inclusive  =31% Exclusive  =63% Electron acceptance Exclusive  =64% Inclusive  =36% Release lepton quality cuts --> gain acceptance x2 Control rate with jet/MET requirements --> exclusive triggers Need high-quality jet/MET trigger --> under upgrade! CDFTrigger power: (2) also Terrific Calorimeter selection ) WH--> lvbb triggers

SVT INFN LNF - 28 Marzo 2007Alberto Annovi10 Example: New exclusive WH-> evbb trigger M. Casarsa et al. (in progress) A real >80% efficient trigger with low peak lumi Using L2 clustering upgrade Tools L1_ET TOW >10 GeV L1_MET >15 GeV L2_MET > 20 GeV L2_Et e > 8 GeV L2_2Jet> 12 GeV

SVT INFN LNF - 28 Marzo 2007Alberto Annovi11 CDF LVL2 Calo upgrade Need a cone algorithm! MET>15 GeV Better Resolution & Efficiency Turn on for MET L3MET Better jet Resolution 15<ET<18 L2cone Pacman Same Pulsars Same mezzanines

SVT INFN LNF - 28 Marzo 2007Alberto Annovi12 CPU & STARS LHC HLT strategy: we “JUST” buy CPUs and write software… CPUs are flexible but missing time can freeze the flexibility! SVT approach: (1st STARS prototype born for a tough JOB) split the algorithm among different technologies VLSIs (AM chip), FPGAs (Pulsars+mezzanines), CPUs Use the appropriate tool i.e. no time waste! Proton-antiproton collision point B decay vertex Impact parameter ( d ) Transverse view ~ 1 mm We will also buy STARS blocks (Pulsars & AM chips) & write firmware + software

SVT INFN LNF - 28 Marzo 2007Alberto Annovi13 SVT Fast Track (FTK) Gr V for LHC SLIM5 Gr V for L1 Next challenge is silicon tracking at both Level 1 & Level 2 LHC What next ? Ideas from P. Giannetti M. Dell’Orso L. Ristori G. Punzi A. Annovi

SVT INFN LNF - 28 Marzo 2007Alberto Annovi14    CMS: 30 minimum bias events + H->ZZ->4   Tracks with P t >2 GeV Help!  30 minimum bias events + H->ZZ->4  Tracks with P t >2 (or Pt>1) GeV for b/  level 2; P t >5 GeV for level 1 Where is the Higgs?   FTK  A powerful tool Where is the Higgs? Online tracking: a tough problem

SVT INFN LNF - 28 Marzo 2007Alberto Annovi15 Where could we insert FTK? PIPELINE LVL1 CALO MUON TRACKER Buffer Memory ROD Buffer Memory FE Raw data ROBs 2 nd output 1 st output Fast Track + few (Road Finder) CPUs Fast Track + few (Road Finder) CPUs Track data ROB Track data ROB high-quality tracks: Pt>1 GeV Ev/sec = 50~100 kHz Very low impact on DAQ No change to LVL2 Fast network connection CPU FARM (LVL2 Algorithms)

SVT INFN LNF - 28 Marzo 2007Alberto Annovi16 ATLAS (w/o & w/ FTK) LVL2 EF offline ATLAS T&P march 2007 LVL2 vs offline 10 times less rejection EF vs offline difference being investigated with Fast-TracK offline b-tag With FTK use offline-quality tracks for all triggers, e.g. sophisticated  triggers

SVT INFN LNF - 28 Marzo 2007Alberto Annovi17 FTKsim versus iPatRec - Resolution CurvatureImpact Parameter  Cot(  ) 1/GeV cm rad M. Dell’Orso, F. Crescioli, G. Punzi, G. Volpi, P. Giannetti et al. (Pisa-Chicago) On going Real Time Tracking & b/  /Bs tagging performance study

SVT INFN LNF - 28 Marzo 2007Alberto Annovi18 Trigger xsec (nb) (MSSM Higgs) Selected triggers with tracks/jets Di Muon trigger (J/Psi, Bs->  ) L1 two muons Pt>1.5 L2 Pt>2 && Dynamical Prescale will use SVT in the future Z -> bb trigger (bjet calibration, top mass) L1 jet5, trk5.5, trk2.5 L2 two trk ip>160  m, ~ same z vertex two jet5 Rate Bs->   with SVT Hadronic di tau L1 2jet5, 2trk6 L2 2jet10, 2trk10 High Pt electron (W, Z, W+H, top) L1 EM8, trk8 L2 EM16, trk8 Luminosity (xE30 cm -2 s -1 )

SVT INFN LNF - 28 Marzo 2007Alberto Annovi19 Note limited rejection power (slope) without tracker information CMS-DAQ TDR F. Palla Proposal (LECC06 workshop) 26 cm 34 cm 42 cm 50 cm SLHC: Minimum Bias events/bx (12.5 ns - 50ns) occupancy degrades performance of trigger algorithms Implies raising E T thresholds or use tracks ~2000 tracks/bx in |  |<1.5 But only a few ‰ have p T >5 GeV/c This plan match with AMchip features!!! 4 pixel layer CMS Muon Rate at L =10 34 cm -2 s -1 Current CMS pixels have links for L1

SVT INFN LNF - 28 Marzo 2007Alberto Annovi20 AMchip receives up to 6 parallel buses for 6 layers at frequency: AMchip now: 50 MHz (Level 2) Next generation: 100 MHz or more Goal: use SAME CHIP for Level 2 & 1 1 AM for each enough-small  space-time Patterns Hits: position+time stamp All patterns inside a single chip N chips for N overlapping events identified by the time stamp Main problem: AM input Bandwidth, even if powerful: >10 Gbits/sec  divide the detector in thin  sectors. Each AM searches in a small  Same blocks --> different applications x80 wedges Similar use (L1 tracking) for CMS (F.Palla proposal) SLIM5 SuperB? (F. Forti, M. Giorgi et al.)

SVT INFN LNF - 28 Marzo 2007Alberto Annovi21 The trigger harmonizes the experiment  exclusive selections The power of a detector can cover the weakness of another  1.Weak  coverage?  use only tracking & calorimeter to release muon identification CDF: top muons 2. Trigger power: no need for trigger dedicated detectors. The trigger MUST not constrain the detector design! An alternative CMS L1 track trigger Double layers more material to simplify the the trigger. Is this a good idea?

SVT INFN LNF - 28 Marzo 2007Alberto Annovi22 AM Board? Detector Data towers Matching Patterns Recover Full resolution data L1?L2 CPU Full resolution jet/electrons ? AM++? Hit Buffer Same blocks --> different applications SVT for Calo? MEG proven SVT Track Fitter algorithm could do offline gamma reconstruction with 800 phototubes. Can we use “STARS” for offline-quality calorimeter reconstruction? Same structure Similar Hardware To be LVL1 ?!? GigaFitter

SVT INFN LNF - 28 Marzo 2007Alberto Annovi23 Same blocks --> different applications AM: massive parallelism in data correlation searches coincidence/anticoincidence of up to 12 measurements! For example: Muon: T1&T2&T3&not(Ecal)&not(Hcal)&M1&M2&M3&M4&M5 LHCB CDF

SVT INFN LNF - 28 Marzo 2007Alberto Annovi24 Creare un gruppo di esperti (ampio campo di conoscenze per algoritmi, trigger, fisica, diverse tecnologie e loro interconnessioni: FPGA, standard cell, CPUs, links) che possa in parte realizzare (CDF- FTK) in parte favorire la crescita delle idee esposte con: 1.massa critica sufficiente 2.finestra temporale sufficientemente ampia Cosa vogliamo fare con i fondi Ideas??

SVT INFN LNF - 28 Marzo 2007Alberto Annovi25 1.Complete CDF: Hardware/Trigger studies/Analysis ATLAS (ongoing upgrade proposal Pisa/Chicago +….): Physics case/Hardware/Analysis (to be approved) 3.New AM chip for level1 – level2 Favor other project development for upgrades & other CMS – SuperB ….. sharing: 1.Hardware (in particular new AM chip) 2.software tools (simulation/diagnostic-control-config.) 3.Trigger ideas STARS could generate new Ideas projects: Brain study – Routers – security (Cooperation) STARS CMS? SuperB L1? Brain Study Routers- Security? LHCB? Cosa vogliamo fare con i fondi Ideas?? Add your idea here!!!

SVT INFN LNF - 28 Marzo 2007Alberto Annovi26 CHI SIAMO e Richieste VII FP 1.FRASCATI: A. Annovi (art. 36-PI, SVT upgrade ex-project leader), S. Torre (Ass. Ric., SVT operations manager) 2.PISA: P. Giannetti (Dir. Ric.), M. Dell’Orso (Prof. Ass.), L. Sartori (M. Curie OIF, AM chip designer, L2 cal. upgrade technical coordinator) 3.FERRARA: storica collab. Ape-CDF per AM standard cell. F.Schifano (RU), R. Tripiccione (Prof. Ord.) – Invitato a partecipare il gruppo Babar – speriamo che accetti IDEAS tot 400 keuro/year (5 years): 1.Man Power for 5 year: Frascati PI + 2 art. 23 – Pisa 1+1/2 art. 23 – Ferrara 1+1/2 art. 23 = * 5 = (20% over.) = 330 keuro 2.70 keuro/year AM chip subcontractors. Prototype using MPW with very challenging technology (~350 keuro tot) 3.Missioni/conferenze/… = 0 euro

SVT INFN LNF - 28 Marzo 2007Alberto Annovi27 BACKUP SLIDES

SVT INFN LNF - 28 Marzo 2007Alberto Annovi28 Tracking processing time With Associative Memory processing time proportional to occupancy 10x luminosity --> 10x AM hardware With CPUs processing time proportional to combinatorial harder to predict! Hardware needs increase exponentially with luminosity! 10x luminosity --> e 10 times CPUs….

SVT INFN LNF - 28 Marzo 2007Alberto Annovi29 Layer 0: ~25 fibers bringing ~40 Hits/12 ns AM EV0 AM EV1 AM EV Hit/10 ns 1 FIFO/ fiber From other layers From other layers From other layers Distribute hits into different sets of registers depending on Event # FPGA The switch board 1 switch / layer layer 0 AM latency = passthrough time (10bx?) + # hits * clock period AM clock (>100MHz) Here is were # of hits and its fluctuations matter

SVT INFN LNF - 28 Marzo 2007Alberto Annovi30 VIRTEX 5: 65 nm- 550 MHz devices XC5VSX95T: 160 x 46 CLB Array (Row x Col) Each Slice: input Luts or RAM or SR 2.4 FFs 3.Wide MUXs 4.Carry logic kbits BlockRams or Fifos+ 640 DSP Slices (organized in columns) ~1200 euro

SVT INFN LNF - 28 Marzo 2007Alberto Annovi31 ATLAS (w/o & w/ FTK) LVL2 EF offline ATLAS T&P march 2007 LVL2 vs offline difference 10 times less rejection EF vs offline difference being investigated with Fast-TracK offline b-tag ATLAS TP 31/3/ bb RuRu

SVT INFN LNF - 28 Marzo 2007Alberto Annovi32 L=2x10 33 cm -2 sec - 1 HLT  CMS H(200,500 GeV)   1,3h ± + X  (QCD GeV)  (H(200,500 GeV)   1,3h+X) m H =500 m H =200 TRK tau on first calo jets Pix tau on first calo jet Staged-Pix tau on first calo jet TRK tau on both calo jets Calo tau on first jet Efficiency & jet rejection could be enhanced by using tracks before calorimeters.

SVT INFN LNF - 28 Marzo 2007Alberto Annovi33 bbH/A  bbbb ATLAS-TDR-15 (1999) M A (GeV) tan  200 Analysis: 4 b-jets |  j |<2.5 P T j > 70, 50, 30, 30 GeV efficiency 10% Effect of trigger thresholds (before deferrals) ATLAS + FTK triggers 13%3b leading3J + SE200 8%3 b-tags MU6  + 2J Effic.LVL2LVL1 As efficient as offline selection: full Higgs sensitivity ATL-COM-DAQ

SVT INFN LNF - 28 Marzo 2007Alberto Annovi34 **** di-muon triggers for rare decays LVL1: 2  RoI p T (  ) > 6GeV (~500 L=10 33 cm -2 s -1 ) LVL2:  Confirm each  RoI from LVL1  In precision muon chambers  Combine  with Inner Detector track  Mass cut 4 GeV < M(  )< 6 GeV EF: Refit ID tracks in Level-2 RoI Decay vertex reconstruction Transverse Decay length cut: L xy > 200  m Efficiency estimation L2/EF: bb   +  - for both  p T >6 GeV –70% of B   +  - –(60% of B  K *  +  - ) Online reconstruction of di-  mass, (MeV) B  K *  +  - B   +  - Not normalized BEAUTY 2006 talk

SVT INFN LNF - 28 Marzo 2007Alberto Annovi35 3cm 15cm 150cm Outer drift chamber Silicon  strip detector Silicon close-up Impact parameter Beam spot 1mm Zoom-in Input (every Level 1 accept): XFT trajectories silicon pulse height for each channel Output (about 20 microseconds later): trajectories that use silicon points r-  tracks impact parameter:  (d)=35  m CDF Level 2 -> next generation Level 1 AM algo

SVT INFN LNF - 28 Marzo 2007Alberto Annovi36 Lepton level 1 match between a muon stub or calorimeter signal with XFT track Luminosity (xE30 cm -2 s -1 ) Level 1 rate (Hz) 600Hz Level 1 mu Pt>4 GeV

SVT INFN LNF - 28 Marzo 2007Alberto Annovi37 The Event Pattern matching in CDF (M. Dell’Orso, L.Ristori )... The Pattern Bank The pattern bank is flexible set of pre-calculated patterns: can account for misalignment changing detector conditions beam movement …

SVT INFN LNF - 28 Marzo 2007Alberto Annovi38 Dedicated device: maximum parallelism Each pattern with private comparator Track search during detector readout If you can read it out you can track it! AM: Associative Memory Bingo scorecard

SVT INFN LNF - 28 Marzo 2007Alberto Annovi39 Associative Memory (AM) for pattern matching M. Dell'Orso and L. Ristori, “VLSI structures for track finding”, Nucl. Instr. and Meth., vol. A278, pp , (1989). 1 register 1 comparator 1 match FF / layer / pattern

SVT INFN LNF - 28 Marzo 2007Alberto Annovi40 5 CLB (come Block RAM): 32 into each column x 20 columns DSP SliCEs

SVT INFN LNF - 28 Marzo 2007Alberto Annovi41 SVT FiFo 35 MHz II FiFo 70 MHz Lay0-Ram or SRLay1- Ram or SRLay2- Ram or SRLay3-Ram or SRLay4-Ram or SRXFT-Ram or SR Comb - FiFo 7 Mult+7  6 Mult+6  37 DSP slices/Equation. For 6 equations 37x6= 222 DSP slices Choose best chi**2 Each equation is calculated 6 times (all layers and 1 SI-missing) 6 input LUT Inside Slices BLock RAMs 6 fit in parallelo/Wedge Choose the best chi**2

SVT INFN LNF - 28 Marzo 2007Alberto Annovi42 FPGA 40 JTAG 4 wedge connectors on each mezzanine  possible up to 6x4=24 fits in parallel 3 mezzanines = 12 wedges 4 th mezzanine  large memory for non-linearity corrections

SVT INFN LNF - 28 Marzo 2007Alberto Annovi : 0.35  FPGA same AM than 0.7  full custom Very regular layout and routing. 95% used logic Same timing performances of the full custom chip! Since then Cam has been introduced into FPGA. We use FPGA AM in the Road warrior to delete SVT ghosts (two candidate tracks differing only for empty layers Pattern

SVT INFN LNF - 28 Marzo 2007Alberto Annovi44 AM projects SVT: Silicon Vertex CDF (L. Ristori et al.) first AM application extremely successful B s mixing, A CP B->hh’, Z->bb, bbH->4b proven to be easy to upgrade (1-2 years turn around time) FTK: ATLAS (preparing a proposal: P.Giannetti-Pisa, M. Shochet, YK Kim- Chicago, T. Liss - Illinois et al.) Full tracker full L1 out rate 100kHz Offline quality (see next slide) and efficiency ???: L1 CMS (F.Palla proposal) tracking at 80MHz momentum measurement with a few (4?) “pixel” layers SLIM5: L1 SuperB (F. Forti, M. Giorgi et al.) R&D to develop MAPS sensor integrated with AM trigger

SVT INFN LNF - 28 Marzo 2007Alberto Annovi45 AM synergy Several AM based projects --> great advanteges: share hardware: develop a single new AMchip we are applying for CE funds for a prototype share expertise: many people are/have been involved in SVT or FTK share tools: e.g. trigger simulation share mantainance (spares/diagnostics...) makes the project easier and cheaper We can help providing training and tools. To start this very “rewarding” business: you will need a smaller motivated group in charge of the project!

SVT INFN LNF - 28 Marzo 2007Alberto Annovi46 How to process all bx rate? 1.Take advantage of AM input bandwidth Currently 50 MHz (hits/sec/layer) Hits for different layers are loaded in parallel Next version > 100MHz (90nm tech. & pipelining) 2.Parallelize by  sectors ~80 detector  sectors are processed in parallel implies a minimum Pt threshold (e.g. >5 GeV) 3.Parallelize different events for each sector 40 AMchips process 40 events in parall. need switch boards housing ~40 AMchips with FPGAs used as data switch for AMchips Caveat: need to take care of # of hits fluctuations

SVT INFN LNF - 28 Marzo 2007Alberto Annovi47 switch board numbers All info here TBC with simulation and R&D! 80 switch boards 1 /  -sector 80 fibers / board assume 5Gbps each 40 AMchip / board now we can fit 32 AMchips in one 4 th of a 9U VME board 4 FPGA switches (1/layer) Each receiving ~20 fibers, i.e. ~100Gbps 40 outputs: one per Amchip Possible with today’s FPGAs 32 AMchips

SVT INFN LNF - 28 Marzo 2007Alberto Annovi48 The CDF Tracker TIME OF FLIGHT B field = 1.4 T Longitudinal view Transverse view

SVT INFN LNF - 28 Marzo 2007Alberto Annovi49 CDF Trigger Architecture Drift chamber tracking Lepton reco/track matching … Silicon tracking Secondary vertex selection … CPU farm Full event reconstruction with speed optimized offline code Level 1 pipeline: 42 clock cycles Level 1 Trigger L1 Accept Level 2 Trigger Level 2 buffer: 4 events L2 Accept DAQ buffers L3 Farm Level MHz Synchromous Pipeline 5.5  s Latency 30 kHz accept rate Level 2 Asynchromous 2 Stage Pipeline 20  s Latency 1000 Hz accept rate Mass Storage (~100 Hz) Raw data, 7.6 MHz Crossing rate SVX read out after L1 SVT here XFT here

SVT INFN LNF - 28 Marzo 2007Alberto Annovi50 Hadronic B decays L1 Two XFT tracks P t > 2 GeV; P t1 + P t2 > 5.5 GeV  < 135° Two body decaysMany body decays L2 Validation of L1 cuts with  >20° 100  m<d 0 <1mm for both tracks Lxy > 200  m d 0 (B)<140  m Validation of L1 cuts with  >2° 120  m<d 0 <1mm for both tracks Lxy > 200  m d 0 (B)<140  m B -> h h’B s mixing Two trigger paths Essential for Bs mixing measurement!

SVT INFN LNF - 28 Marzo 2007Alberto Annovi51 1.Find low resolution track candidates called “roads”. Solve most of the pattern recognition 2.Then fit tracks inside roads. Thanks to 1 st step it is much easier Super Bin (SB) Too much large AM  Tracking in 2 steps OTHER functions are needed inside SVT: Hit Buffer + Track fitter + Hit Finder

SVT INFN LNF - 28 Marzo 2007Alberto Annovi52 SVT Performance (  m) 35  m  33  m resol  beam   = 48  m SVT Impact parameter 90% efficient given a fiducial offline track with SVX hits in 4 layers

SVT INFN LNF - 28 Marzo 2007Alberto Annovi53 Promise is promise What we promised…. From SVT TDR (’96) using offline silicon hits and offline CTC tracks  ~ 45  m

SVT INFN LNF - 28 Marzo 2007Alberto Annovi54 SVX only  Good tracks from just 4 closely spaced silicon layers  I.p. as expected due to the lack of curvature information impact parameter distribution  ~ 87  m Silicon only no XFT

SVT INFN LNF - 28 Marzo 2007Alberto Annovi55 SVT Upgrade (done, fall 2005) Luminosity (xE30) original system upgraded system Timing (  s) L1 bandwidth 18kHz -> 30kHz Now stable w.r.t luminosity Need to process more complex events in less time Same architecture as original system Better pattern recognition resolution New AM chip 32K  512K patterns fewer combinations/road Faster components Use custom but general purpose Pulsar boards Short development time Parassitic test & validation of boards Take good high lumi & more low lumi NSS2005 Conf. Rec. Vol.1, 603

SVT INFN LNF - 28 Marzo 2007Alberto Annovi56 SVT flexibility for new ideas SVT designed to be flexible programmable patterns Look Up Tables & FPGAs modular system Pulsar programmable board with SVT connectors implement new functions in ~ a few months Design system for easy testing Extensive on-crate monitoring during beam

SVT INFN LNF - 28 Marzo 2007Alberto Annovi57 Track data ROB Track data ROB Raw data ROBs ~Offline quality Track parameters ~75 9U VME boards – 4 types SUPER BINS DATA ORGANIZER ROADS ROADS + HITS EVENT # N PIPELINED AM HITS DO-board EVENT # 1 AM-board 2 nd step: track fitting Inside Fast-Track Pixels & SCT Data Formatter (DF) 50~100 KHz event rate RODs cluster finding split by layer overlap regions RW Few CPUs NEW S-links

SVT INFN LNF - 28 Marzo 2007Alberto Annovi58 CurvatureImpact Parameter  Cot(  ) Z Particle Type FTKsim versus iPatRec – Efficiency M. Dell’Orso, F. Crescioli, G. Punzi, G. Volpi, G. Usai

SVT INFN LNF - 28 Marzo 2007Alberto Annovi59  x i Non-linear geometrical constraint for a circle: F(x 1, x 2, x 3, …) = 0 But for sufficiently small displacements: F(x 1, x 2, x 3, …) ~ a 0 + a 1  x 1 + a 2  x 2 + a 3  x 3 + … = 0 with constant a i (first order expansion of F) From non-linear to linear constraints

SVT INFN LNF - 28 Marzo 2007Alberto Annovi60 Constraint surface

SVT INFN LNF - 28 Marzo 2007Alberto Annovi61 Online beamline fit & correction d phi d Subtracted Raw = Y beam cos  – X beam sin  Measure beam width as well --> input to Accelerator Division x y  d Transverse view

SVT INFN LNF - 28 Marzo 2007Alberto Annovi62 AM++

SVT INFN LNF - 28 Marzo 2007Alberto Annovi63 Pulsar in SVT++ Implement new boards with Pulsars: Fast enough to handle the new amount of data SVT interface built in Developers can concentrate on firmware (= board functionalities) The Pulsar board is a programmable board: 3 powerful FPGAs embedded RAM all CDF connectors modular mezzanines S-link I/O RAM extension CDF --> board devel. RAM mezzanine 4Mx48bits

SVT INFN LNF - 28 Marzo 2007Alberto Annovi64

SVT INFN LNF - 28 Marzo 2007Alberto Annovi65 ATLAS TDR 016

SVT INFN LNF - 28 Marzo 2007Alberto Annovi66 Why SVT succeeded –Performance: Parallel/pipelined architecture Custom VLSI pattern recognition Linear track fit in fast FPGAs –Reliability: Easy to sink/source test data (many boards can self-test) Modular design; universal, well-tested data link & fan-in/out Extensive on-crate monitoring during beam running Detailed CAD simulation before prototyping –Flexibility: System can operate with some (or all) inputs disabled Building-block design: can add/replace processing steps Modern FPGAs permit unforeseen algorithm changes –Key: design system for easy testing/commissioning

SVT INFN LNF - 28 Marzo 2007Alberto Annovi67 Sector segmentation Subdivide the (pixel) detector in many  sectors –Keep data volume limited in each sector Combine information from at least 3 layers out of 4 in each sector –Momentum resolution of ~ few (<10)% at 10 GeV/c –Granularity driven by the minimum measurable p T for triggering purposes, without loosing efficiency ~80  sectors at the innermost radius –  ~ 4.5° matches to a module of 2 cm width –Well covering the bending of a track of 5 GeV p T and above Larger  sectors with increasing radii –Match the sensors widths This plan match with AMchip features!!! 26 cm 34 cm 42 cm 50 cm F. Palla (LECC06 workshop)

SVT INFN LNF - 28 Marzo 2007Alberto Annovi68 Conceptual design AM EV0 AM EV1 AM EV Layer 0: ~25 fibers bringing ~40 Hits/12 ns 1 Hit/10 ns From other layers From other layers From other layers Distribute hits into different sets of storage units depending on EVent # Parallel IN Serial OUT Parallel IN Serial OUT Parallel IN Serial OUT 1 FPGA From Detector F. Palla (LECC06 workshop)

SVT INFN LNF - 28 Marzo 2007Alberto Annovi69 Occupancy studies GEANT4 simulation of pixelized tracking layers –Simulated 3500 minimum bias using latest Pythia settings events and group into chunks of 100 events per bunch crossing and 250 t-tbar events –Use current CMS layout (material budget) but different sensors granularity Layer No. Radius (cm) Hit/module/bx a No. detectors in  Hits/sector/bxªData rate*/module (Gbps) Data rate*/sector (Gbps) No. data links † /layer ª average number on minimum bias events, t-t will contribute on average<<1 hit/det *20 bits/hit † for a data link speed of 5 Gbps Current links in CMS TIB Silicon Strip: 26 cm - 34 cm F. Palla (LECC06 workshop)