The world of Atoms. Quantum Mechanics Theory that describes the physical properties of smallest particles (atoms, protons, electrons, photons) "A scientific.

Slides:



Advertisements
Similar presentations
Arrangement of Electrons in Atoms
Advertisements

Quantum Theory & Electron clouds. The Great The Great Niels Bohr ( )
Electronic Structure of Atoms
WAVE MECHANICS (Schrödinger, 1926) The currently accepted version of quantum mechanics which takes into account the wave nature of matter and the uncertainty.
The Photoelectric Effect
Lecture 2210/26/05. Moving between energy levels.
Chapter 71 Atomic Structure Chapter 7. 2 Electromagnetic Radiation -Visible light is a small portion of the electromagnetic spectrum.
Wavefunctions and Energy Levels Since particles have wavelike properties cannot expect them to behave like point-like objects moving along precise trajectories.
Mark S. Cracolice Edward I. Peters Mark S. Cracolice The University of Montana Chapter 11 Atomic Theory: The Quantum.
Electronic Structure of Atoms Chapter 6 BLB 12 th.
Quantum Mechanics models of an atom
Electronic Structure of Atoms © 2009, Prentice-Hall, Inc. Chapter 6 Electronic Structure of Atoms Chemistry, The Central Science, 11th edition Theodore.
ELECTRONIC STRUCTURE OF ATOMS
Periodicity and Atomic Structure
How did we discover electron arrangement in an atom? ELECTROMAGNETIC RADIATION ! ! !
Chapter 6 Electronic Structure of Atoms
The Quantum Model of the Atom. Proposed that the photoelectric effect could be explained by the concept of quanta, or packets of energy that only occur.
Quantum Mechanical Model of the Atom Chapter 6 Part III.
CHEMISTRY T HIRD E DITION Gilbert | Kirss | Foster | Davies © 2012 by W. W. Norton & Company CHAPTER 7-B Quantum Numbers.
Bohr and Quantum Mechanical Model Mrs. Kay Chem 11A.
-The Bohr Model -The Quantum Mechanical Model Chemistry.
-The Bohr Model -The Quantum Mechanical Model Warner SCH4U Chemistry.
Chapter 6 Electronic Structure of Atoms
Chapter 6 Electronic Structure of Atoms. Waves To understand the electronic structure of atoms, one must understand the nature of electromagnetic radiation.
Arrangement of Electrons. Spectroscopy and the Bohr atom (1913) Spectroscopy, the study of the light emitted or absorbed by substances, has made a significant.
Atomic Structure and Periodicity
Atomic Models Scientist studying the atom quickly determined that protons and neutrons are found in the nucleus of an atom. The location and arrangement.
Electronic Structure of Atoms © 2009, Prentice-Hall, Inc. Chapter 7 Electronic Structure of Atoms.
-The Bohr Model -The Quantum Mechanical Model Mrs. Coyle Chemistry.
Electronic Structure of Atoms Electronic Structure of Atoms.
Quantum Theory and the Atom
The Bohr Model of the Atom. The behavior of electrons in atoms is revealed by the light given off when the electrons are “excited” (made to absorb energy).
Quantum Theory the modern atomic model. Bohr Model of the Atom a quantum model proposed by Niels Bohr in 1913 It helped to explain why the atomic emission.
1 Atomic Spectra Blackbody radiation is the visible glow that solid objects emit when heated. Max Planck (1858–1947): proposed the energy is only emitted.
1 Chapter 7: Periodicity and Atomic Structure Renee Y. Becker Valencia Community College CHM 1045.
Electronic Structure of Atoms  2009, Prentice-Hall, Inc. Chapter 6 Electronic Structure of Atoms Chemistry, The Central Science, 11th edition Theodore.
Quantum Theory Chang Chapter 7 Bylikin et al. Chapter 2.
Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms.
Warm Up9/20 Draw the Bohr Model for Aluminum What is the difference between a hypothesis and a theory?
The Bohr Model; Wave Mechanics and Orbitals. Attempt to explain H line emission spectrum Why lines? Why the particular pattern of lines? Emission lines.
Chapter 7: Quantum theory of the atom Chemistry 1061: Principles of Chemistry I Andy Aspaas, Instructor.
Standing Waves Reminder Confined waves can interfere with their reflections Easy to see in one and two dimensions –Spring and slinky –Water surface –Membrane.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Table of Contents Chapter 4 Arrangement of Electrons in Atoms Section.
Chapter 61 Electronic Structure of Atoms Chapter 6.
Quantum theory Electron Clouds and Probability. Bohr’s model of the atom is unable to describe electron (e - ) behavior in an atom Problem: multiple spectral.
Chapter 6 Electronic Structure of Atoms John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation © 2012 Pearson Education,
Chapter 7 Atomic Structure.
Properties of light spectroscopy quantum hypothesis hydrogen atom Heisenberg Uncertainty Principle orbitals ATOMIC STRUCTURE Kotz Ch 7 & Ch 22 (sect 4,5)
Chapter 6 Electronic Structure of Atoms
-The Bohr Model -The Quantum Mechanical Model
Atomic Models Scientist studying the atom quickly determined that protons and neutrons are found in the nucleus of an atom. The location and arrangement.
Electronic Structure of Atoms
Electronic Structure and Light
Historical Overview of Quantum Mechanical Discoveries
Quantum Mechanics the world is weird.
The Quantum Mechanical Model
Islamic University - Gaza
Chapter 6 Quantum Mechanical Model & Electron Configurations
The Bohr Model, Wave Model, and Quantum Model
Presentation transcript:

The world of Atoms

Quantum Mechanics Theory that describes the physical properties of smallest particles (atoms, protons, electrons, photons) "A scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die and a new generation grows up that is familiar with it." Max Planck Erwin Schrödinger "I don't like it and I'm sorry I ever had anything to do with it." "An expert is someone who knows some of the worst mistakes that can be made in his subject, and how to avoid them" Werner Heisenberg "It is true that many scientists are not philosophically minded and have hitherto shown much skill and ingenuity but little wisdom." Max Born

The hydrogen atom Niels Bohr ( ) - electron orbits around the nucleus like a wave - orbit is described by wavefunction - wavefunction is discrete solution of wave equation - only certain orbits are allowed - orbits correspond to energy levels of atom

The hydrogen atom In the Bohr model of the atom, the hydrogen atom is like a planetary system with the electron in certain allowed circular orbits. The Bohr model does not work for more complicated systems!

Quantum numbers Each orbital is characterized by a set of quantum numbers. Principal quantum number (n): integral values (1,2,3). Related to the size and energy of the orbital. Angular momentum quantum number ( l ): integral values from 0 to (n-1) for each value of n. Magnetic quantum number (m l ): integral values from - l to l for each value of n.

Quantum numbers How many orbitals are there for each principle quantum number n = 2 and n = 3? For each n, there are n different l-levels and (2l+1) different m l levels for each l. n=2:n = 2different l-levels (2l+1) = 2 x 0 + 1= 1 m l -levels for l = 0 l = 0, 1 (2l+1) = 2 x 1 + 1= 3 m l -levels for l = 1 Total: = 4 levels for n = 2

Quantum numbers How many orbitals are there for each principle quantum number n = 2 and n = 3? For each n, there are n different l-levels and (2l+1) different m l levels for each l. n=3:n = 3different l-levels (2l+1) = 2 x 0 + 1= 1 m l -levels for l = 0 l = 0, 1,2 (2l+1) = 2 x 1 + 1= 3 m l -levels for l = 1 Total: = 9 levels for n = 3 (2l+1) = 2 x 2 + 1= 5 m l -levels for l = 2 The total number of levels for each n is n 2

Quantum numbers Names of atomic orbitals are derived from value of l :

Quantum numbers Quantum numbers for the first four levels in the hydrogen atom.

What is the meaning of ? Wavefunction itself is not an observable! Square of wavefunction is proportional to probability density “I cannot but confess that I attach only a transitory importance to this interpretation. I still believe in the possibility of a model of reality - that is to say, of a theory which represents things themselves and not merely the probability of their occurrence. On the other hand, it seems to me certain that we must give up the idea of complete localization of the particle in a theoretical model. This seems to me the permanent upshot of Heisenberg's principle of uncertainty. (Albert Einstein, on Quantum Theory, 1934”

Wavefunction and probability ‘function’ r ‘probability’

Quantum numbers A subshell is a set of orbitals with the same value of l. They have a number for n and a letter indicating the value of l. l = 0 (s) l = 1 (p) l = 2 (d) l = 3 (f) l = 4 (g)

Orbital Shapes

Heisenberg uncertainty principle Life is uncertain! Where’s the electron? Werner Heisenberg That’s quite uncertain!

Heisenberg uncertainty principle It is not possible to know both the position and momentum of an electron at the same time with infinite precision.  x is the uncertainty in position.  (mv) is the uncertainty in momentum. h is Planck’s constant.

Heisenberg

The s orbitals in hydrogen The higher energy orbitals have nodes, or regions of zero electron density. orbital surfaces probability distributions s-orbitals have n-1 nodes. The 1s orbital is the ground state for hydrogen. The orbital is defined as the surface that contains 90% or the total electron probability ( ).

Pauli exclusion principle How many electrons fit into 1 orbital? m s = +1/2m s = -1/2 Only 2 electrons fit into 1 orbital:1 spin up 1 spin down

Pauli exclusion principle As the temperature is lowered, bosons pack much closer together, while fermions remain spread out. Electrons are fermions. There are also bosons

Energy Levels n =1 n =2 n =3 n =4 n =5 n =∞ E R H = x J Z = atomic number n = energy level

Energy Transitions For the energy change when moving from one level to another: n =1 n =2 n =3 n =4 n =5 n =∞ E transition

Lines and Colors Change in energy corresponds to a photon of a certain wavelength: Change in energy Frequency of emitted light Wavelength of light emitted

Lines and Colors What is the wavelength of the photon that is emitted when the hydrogen atom falls from n=3 into n=2? nm

Light out of Molecules n =1 n =2 n =3 n =4 n =5 n =∞ E transition hydrogen Rhodamine 532 nm 570 nm ‘Fluorescence’

Degeneracy Orbital energy levels for the hydrogen atom.

Beyond hydrogen Hydrogen is the simplest element of the periodic table. Exact solutions to the wave equations for other elements do not exist!

Polyelectric Atoms What do the orbitals of non-hydrogen atoms look like? Multiple electrons: electron correlation Due to electron correlation, the orbitals in non-hydrogen atoms have slightly different energies

Polyelectric Atoms Screening: due to electron repulsion, electrons in different orbits ‘feel’ a different attractive force from the nucleus 11 + e-e- e-e- e-e- e-e- e-e- e-e- e-e- e-e- Sees a different effective charge! Screening changes the energy of the electron orbital; the electron is less tightly bound.

Polyelectric Atoms Penetration: within a subshell (n), the orbital with the lower quantum number l will have higher probability closer to the nucleus n =2 orbital n=3 orbital

Polyelectric Atoms Hydrogen Polyelectric atom Orbitals with the same quantum number n are degenerate Degeneracy is gone: E ns < E np < E nd < E nf

Spectra of Polyelectric Atoms Due to lifting of degeneracy, many more lines are possible in the spectra of polyelectric atoms