(1,0) (0,1) (-1,0) (0, -1) α (x,y) x y 1 sin(α) = y cos(α) = x (cos(α), sin(α)) (0,0) tan(α) = y/x 2.1 Unit Circle.

Slides:



Advertisements
Similar presentations
Solving Right Triangles Essential Question How do I solve a right triangle?
Advertisements

Trigonometry Right Angled Triangle. Hypotenuse [H]
Evaluating Sine & Cosine and and Tangent (Section 7.4)
Section 5.3 Trigonometric Functions on the Unit Circle
Review of Trigonometry
By: Alvin Nguyen. Unit Circle Jeopardy ConversionsRotation AnglesReference Angles Trig FunctionsWord Problems
Aim: Trig. Ratios for any Angle Course: Alg. 2 & Trig. Aim: What good is the Unit Circle and how does it help us to understand the Trigonometric Functions?
13.3 Evaluating Trigonometric Functions
Section 4.4. In first section, we calculated trig functions for acute angles. In this section, we are going to extend these basic definitions to cover.
Half-angle formulae Trigonometry.
Section 7.2 The Inverse Trigonometric Functions (Continued)
EXAMPLE 1 Evaluate inverse trigonometric functions Evaluate the expression in both radians and degrees. a.cos –1 3 2 √ SOLUTION a. When 0 θ π or 0° 180°,
Chapter 5 Review. 1.) If there is an angle in standard position of the measure given, in which quadrant does the terminal side lie? Quad III Quad IV Quad.
Pre calculus Problem of the Day Homework: p odds, odds, odds On the unit circle name all indicated angles by their first positive.
TRIGONOSMETRY Quadrant IQuadrant II Quadrant IIIQuadrant IV X-AXIS Y-AXIS.
UNIT CIRCLE. Review: Unit Circle – a circle drawn around the origin, with radius 1.
Starter a 6 c A 53° 84° 1.Use Law of Sines to calculate side c of the triangle. 2.Use the Law of Cosines to calculate side a of the triangle. 3.Now find.
6.4 Trigonometric Functions
Section 5.3 Trigonometric Functions on the Unit Circle
EXAMPLE 1 Use an inverse tangent to find an angle measure
Inverses  How do we know if something has an inverse? ○ Vertical line tests tell us if something is a function ○ Horizontal line tests will tell us if.
Unit Circle And Trigonometric Functions. (x, y) = (cos Ɵ, sin Ɵ )
Geometry Notes Lesson 5.3A – Trigonometry T.2.G.6 Use trigonometric ratios (sine, cosine, tangent) to determine lengths of sides and measures of angles.
Sum and Difference Formulas New Identities. Cosine Formulas.
Trig Ratios SohCahToa Sine = Sin A = ___ Sin C = ___.
Lesson 4.2. A circle with center at (0, 0) and radius 1 is called a unit circle. The equation of this circle would be (1,0) (0,1) (0,-1) (-1,0)
Section 13.6a The Unit Circle.
Section 4.2 Trigonometric Functions: The Unit Circle
WHAT ARE SPECIAL RIGHT TRIANGLES? HOW DO I FIND VALUES FOR SIN, COS, TAN ON THE UNIT CIRCLE WITHOUT USING MY CALCULATOR? Exact Values for Sin, Cos, and.
Chapter 4 Trigonometric Functions Trig Functions of Any Angle Objectives:  Evaluate trigonometric functions of any angle.  Use reference angles.
13.7 I NVERSE T RIGONOMETRIC F UNCTIONS Algebra II w/ trig.
Warm-Up 8/26 Simplify the each radical expression
4.7 Inverse Trig Functions. By the end of today, we will learn about….. Inverse Sine Function Inverse Cosine and Tangent Functions Composing Trigonometric.
Trigonometric Functions sine, cosine and tangent.
14.2 The Circular Functions
4.4 Trigonmetric functions of Any Angle. Objective Evaluate trigonometric functions of any angle Use reference angles to evaluate trig functions.
Inverse Trigonometric
+. + Bellwork + Objectives You will be able to use reference angles to evaluate the trig functions for any angle. You will be able to locate points on.
Objective: use the Unit Circle instead of a calculator to evaluating trig functions How is the Unit Circle used in place of a calculator?
The Inverse Sine, Cosine, and Tangent Functions Section 4.1.
Finding a Missing Angle of a Right Triangle. EXAMPLE #1  First: figure out what trig ratio to use in regards to the angle.  Opposite and Adjacent O,A.
Warm-Up Write the sin, cos, and tan of angle A. A BC
Warm-Up 3/ Find the measure of
Review Trig Functions. Vocab 1) The number of radians in one revolution is _______. 2) Sine and cosine are both negative in the ____ quadrant.
Does point P lie on the unit circle? If Point P is the point on the terminal arm of angle  that intersects the unit circle, in which quadrant does P lie?
4.4 Trigonometric Functions of Any Angle. Ex.Find the sine, cosine, and tangent of if (-3,4) is a point on the terminal side of. (-3,4) -3 4 ? =5.
Activity 4-2: Trig Ratios of Any Angles
Section 3 – Circular Functions Objective To find the values of the six trigonometric functions of an angle in standard position given a point on the terminal.
Trigonometry Section 4.2 Trigonometric Functions: The Unit Circle.
Bellringer 3-28 What is the area of a circular sector with radius = 9 cm and a central angle of θ = 45°?
Use Reference Angles to Evaluate Functions For Dummies.
8-3 Trigonometry Part 2: Inverse Trigonometric Functions.
C H. 4 – T RIGONOMETRIC F UNCTIONS 4.2 – The Unit Circle.
4.4 Day 1 Trigonometric Functions of Any Angle –Use the definitions of trigonometric functions of any angle –Use the signs of the trigonometric functions.
Holt McDougal Algebra The Unit Circle Toolbox p. 947(1-34) 13.3a 13.3b radian degrees unit circle.
February 13 th copyright2009merrydavidson. Inverse functions switch the x and y values. The inverse is NOT a function. y = arcsin x y = sin -1 x 4.7Inverse.
4.4 Trig Functions of Any Angle Objectives: Evaluate trigonometric functions of any angle Use reference angles to evaluate trig functions.
EXAMPLE 1 Use an inverse tangent to find an angle measure Use a calculator to approximate the measure of A to the nearest tenth of a degree. SOLUTION Because.
Inverse Trig Functions
C2 TRIGONOMETRY.
Activity 4-2: Trig Ratios of Any Angles
47.75⁰ Convert to radians: 230⁰.
Arc Length Area of a Sector Unit Circle Trig values of unit circle
Warm Up 30°±
Trigonometric Functions: Unit Circle Approach
Double-Angle, Half-Angle Formulas
Trigonometry for Angle
8-4 Trigonometry Vocab Trigonometry: The study of triangle measurement
Section 4.7.
What is the radian equivalent?
Presentation transcript:

(1,0) (0,1) (-1,0) (0, -1) α (x,y) x y 1 sin(α) = y cos(α) = x (cos(α), sin(α)) (0,0) tan(α) = y/x 2.1 Unit Circle

60° 70° 80° 100° 110° 120° 130° 150° 160° 170° 190° 200° 210° 220° 230° 240° 250° 280° 290° 300° 310° ° 20° 30° 40° 50° 140° 260° 320° 330° 340° 350°

10° 20° 30° 40° 350° 340° 330° 320° 50° 60° 70° 80°100° 110° 120° 130° 140° 150° 160° 170° 190° 200° 210° 220° 230° 240° 250° 260°280° 290° 300° 310° Quadrant IQuadrant II Quadrant IIIQuadrant IV Sine + Cosine + Tangent + Sine + Cosine - Tangent - Sine - Cosine - Tangent + Sine - Cosine + Tangent -

2.2 Arc Length and Sectors d (1/7)d C = πd

2.2 Arc Length and Sectors r r 2 r 2 r 2 (1/7) r 2 A = πr 2

α 2.2 Arc Length and Sectors s α s 360 πd =

50° 2.2 Arc Length and Sectors s α s 360 πd = 20 in.

50° 2.2 Arc Length and Sectors s 50 s π = 20 in. 200π 360 = = 1.74 in.

α 2.2 Arc Length and Sectors k α k 360 πr = 2

45° 2.2 Arc Length and Sectors k α k 360 πr = 2 6 ft. 45 k π = K = in. 2

2.3 Radian Measure 0 rad. π rad. 2π rad. 1 rad. 2 rad. 3 rad. 4 rad. 5 rad. 6 rad. π 2 rad. 3π3π 2

60° 70° 80° 100° 110° 120° 130° 150° 160° 170° 190° 200° 210° 220° 230° 240° 250° 280° 290° 300° 310° 10° 20° 30° 40° 50° 140° 260° 320° 330° 340° 350° π 180° 0, 2π π 2 3π3π 2 π 6 5π5π 6

2.4 Inverse Trig Functions and Negative Angles sin (.6) = _____________ ─ ˚

60° 70° 80° 100° 110° 120° 130° 150° 160° 170° 190° 200° 210° 220° 230° 240° 250° 280° 290° 300° 310° ° 20° 30° 40° 50° 140° 260° 320° 330° 340° 350°

2.4 Inverse Trig Functions and Negative Angles sin (.6) = ____________________ ─ ˚ or ˚ 36.87˚ + 360n ˚ + 360n

2.4 Inverse Trig Functions and Negative Angles cos (.4) = ____________________ ─ ˚

60° 70° 80° 100° 110° 120° 130° 150° 160° 170° 190° 200° 210° 220° 230° 240° 250° 280° 290° 300° 310° ° 20° 30° 40° 50° 140° 260° 320° 330° 340° 350°

2.4 Inverse Trig Functions and Negative Angles cos (.4) = ____________________ ─ ˚ or ˚ 66.42˚ + 360n ˚ + 360n

2.4 Inverse Trig Functions and Negative Angles tan (2.5) = _____________ ─ ˚

60° 70° 80° 100° 110° 120° 130° 150° 160° 170° 190° 200° 210° 220° 230° 240° 250° 280° 290° 300° 310° ° 20° 30° 40° 50° 140° 260° 320° 330° 340° 350°

2.4 Inverse Trig Functions and Negative Angles tan (2.5) = ____________________ ─ ˚ or 248.2˚ 68.2˚ + 180n