Strange Galactic Supernova Remnants G357.7-0.1 (the Tornado) & G350.1-0.3 in X-rays Anant Tanna Physics IV 2007 Supervisor: Prof. Bryan Gaensler.

Slides:



Advertisements
Similar presentations
Thermal X-ray in SNR Patrick Slane Zhang Ningxiao.
Advertisements

Supernova Remnants Shell-type versus Crab-like Phases of shell-type SNR.
Suzaku Discovery of Fe K-Shell Line from the O-rich SNR G Arxiv: Fumiyoshi Kamitukasa et al.
Modeling photon and neutrino emission from the supernova remnant RX J  Constraints from geometry  Constraints from spectral energy distribution.
RX J alias Vela Jr. The Remnant of the Nearest Historical Supernova : Impacting on the Present Day Climate? Bernd Aschenbach Vaterstetten, Germany.
X-ray Properties of Five Galactic SNRs arXiv: Thomas G. Pannuti et al.
SUPERNOVA REMNANTS IN THE MAGELLANIC CLOUDS JOHN R. DICKEL UNIVERSITY OF NEW MEXICO AND ROSA MURPHY WILLIAMS COLUMBUS STATE UNIVERSITY Preliminary SNR.
Supernova Remnants in the ChASeM33 X-ray Survey of M33 Knox S. Long, William P. Blair, P. Frank Winkler, and the ChASeM33 team.
The Sharpest Spatial View of a Black Hole Accretion Flow from the Chandra X-ray Visionary Project Observation of the NGC 3115 Bondi Region Jimmy Irwin.
October 10, 2002COSPAR Houston, TX1 X-Ray Spectral Morphologies of Young Supernova Remnants John P. Hughes Rutgers University  Cara Rakowski, Rutgers.
Many sources (hot, glowing, solid, liquid or high pressure gas) show a continuous spectra across wavebands. Emission spectra Elements in hot gases or.
Tycho’s SNR – Obs ID 115 ds9 analysis by Matt P. & Leah S. PURPOSE: To use ds9 software to analyze the X-ray spectrum of the Tycho Supernova Remnant, determine.
High Resolution X-ray Spectroscopy of SN 1006 X-ray Diagnostics of Astrophysical Plasmas Jacco Vink (SRON Nat. Inst. for Space Research) Cambridge Ma,
Working Group 2 - Ion acceleration and interactions.
Multi-Messenger Astronomy AY 17 10/19/2011. Outline What is Multi-messenger astronomy? Photons Cosmic Rays Neutrinos Gravity-Waves Sample-Return.
1 SWCX: A Background Component You Should Care About Take Brad’s talk to heart. For observations of objects which cover the FOV with surface brightnesses.
Facts about SNe and their remnants Evolution of an SNR sensitively depends on its environment. Observed SNRs are typically produced by SNe in relative.
GLAST and NANTEN Molecular clouds as a probe of high energy phenomena Yasuo Fukui Nagoya University May 22, 2007 UCLA.
IR Shell Surrounding the Pulsar Wind Nebula G SNRs and PWNe in the Chandra Era Boston, July 8, 2009 Tea Temim (CfA, Univ. of MN) Collaborators:
Discovery of New SNR Candidates in the Galactic Center Region with ASCA and Chandra Atsushi Senda 1, Hiroshi Murakami 2, Aya Bamba 1, Shin-ichiro Takagi.
Summary Candidate supernova remnants G and G23.5–0.0 were observed by XMM-Newton in the course of a snap-shot survey of plerionic and composite.
January 8, st AAS Meeting1 Nucleosynthesis, Pulsars, Cosmic Rays, and Shock Physics: High Energy Studies of Supernova Remnants with Chandra and.
An X-ray Study of the Bright Supernova Remnant G with XMM-Newton SNRs and PWNe in the Chandra Era Boston, MA – July 8 th, 2009 Daniel Castro,
GLAST Workshop (Cambridge, MA, 6/21/07) Patrick Slane (CfA) Supernova Remnants and GLAST.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae 2013/12/18 Speaker : Yu-Hsun Cheng Professor: Yosuke Mizuno.
Tycho’s SNR SNR G "To make an apple pie from scratch, you must first invent the universe." ~Carl Sagan.
RXJ a soft X-ray excess in a low luminosity accreting pulsar La Palombara & Mereghetti astro-ph/
NASSP Masters 5003F - Computational Astronomy Lecture 19 EPIC background Event lists and selection The RGA Calibration quantities Exposure calculations.
Radio and X-Ray Properties of Magellanic Cloud Supernova Remnants John R. Dickel Univ. of Illinois with: D. Milne. R. Williams, V. McIntyre, J. Lazendic,
Suzaku, XMM-Newton and Chandra Observations of the Central Region of M 31 Hiromitsu Takahashi (Hiroshima University, Japan) M. Kokubun, K. Makishima, A.
AS2001 / 2101 Chemical Evolution of the Universe Keith Horne Room 315A
A multi-colour survey of NGC253 with XMM-Newton Robin Barnard, Lindsey Shaw Greening & Ulrich Kolb The Open University.
AS2001 Chemical Evolution of the Universe Keith Horne 315a
Observations of SNR RX J with CANGAROO-II telescope Kyoto, Dec., 16, 2003 H. Katagiri, R. Enomoto, M. Mori, L. Ksenofontov Institute for cosmic.
A New Magnetar Candidate Located Outside the Galactic Plane? Joe Callingham | Sean Farrell | Bryan Gaensler | Geraint Lewis Sydney Institute for Astronomy.
Gamma-Ray Bursts observed by XMM-Newton Paul O’Brien X-ray and Observational Astronomy Group, University of Leicester Collaborators:- James Reeves, Darach.
The cooling-flow problem
Chandra X-Ray Spectroscopy of DoAr 21: The Youngest PMS Star with a High-Resolution Grating Spectrum The High Energy Grating Spectrum of DoAr 21, binned.
X-ray Absorption and Scattering by Interstellar Dust: the XMM view Elisa Costantini Max Planck Institute for extraterrestrial Physics (MPE) P. Predehl,
(1) Soft X-rays : Thermal Plasma (SN1006) (2) Hard X-rays: Non-thermal (SN 1006, RCW 86) (3) Mysterious 6.4 keV line (RCW 86, GC) Reports of the Suzaku.
Observations of supernova remnants Anne Decourchelle Service d’Astrophysique, CEA Saclay I- Ejecta dominated SNRs: Cas A, Tycho and Kepler II- Synchrotron-dominated.
Search for Synchrotron X-ray Dominated SNRs with the ASCA Galactic Plane Survey Aya Bamba 1, Masaru Ueno 1, Katsuji Koyama 1, Shigeo Yamauchi 2, Ken Ebisawa.
1WGA J 侵略計劃. First image of TeV-energy gamma-rays of a cosmic source: a supernova remnant HESS had just made a map of very high energy gamma-rays,
Gas mixing and Star formation by shock waves and turbulence Claudio Melioli Elisabete M. de Gouveia Dal Pino (IAG-USP)
Gilles Maurin – CEA Saclay - MODE10 - SNR session - November 2010 Geometry of acceleration in the bipolar remnant of SN1006 with XMM-Newton Gilles Maurin,
X-ray study of a nearby nuclear X-ray study of a nearby nuclear starburst and a nearby AGN starburst and a nearby AGN Roberto Soria (UCL) Mat Page, Kinwah.
C. Y. Hui & W. Becker X-Ray Studies of the Central Compact Objects in Puppis-A & RX J Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse.
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
X-ray observation of the Cygnus Loop with Suzaku and XMM-Newton
Bremen, Germany Patrick Slane (CfA) COSPAR 2010: E19 Fermi Studies of Collaborators: D. Castro S. Funk Y. Uchiyama J. D. Gelfand O. C. de Jager A. Lemiere.
Shock-cloud interaction in the Vela SNR: the XMM-Newton view M. Miceli 1, F. Bocchino 2, A. Maggio 2, F. Reale 1 1.Dipartimento di Scienze Fisiche ed Astronomiche,
RGS observations of cool gas in cluster cores Jeremy Sanders Institute of Astronomy University of Cambridge A.C. Fabian, J. Peterson, S.W. Allen, R.G.
Metal abundance evolution in distant galaxy clusters observed by XMM-Newton Alessandro Baldi Astronomy Dept. - University of Bologna INAF - OABO In collaboration.
Finding Black Hole Systems in Nearby Galaxies With Simbol-X Paul Gorenstein Harvard-Smithsonian Center for Astrophysics.
「すざく」 による超新星残骸 RCW86 の観測 Suzaku Observations of Supernova Remnant RCW86 山口 弘悦 (理研) Hiroya Yamaguchi (RIKEN) ← Preliminary image of the Suzaku mapping observation.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
Dejan Urošević Department of Astronomy, Faculty of Mathematics, University of Belgrade Supernova remnants: evolution, statistics, spectra.
American Astronomical Society – Austin, TX (2008) Patrick Slane (CfA) In collaboration with: D. Helfand (Columbia) S. Reynolds (NC State) B. Gaensler (U.
High energy Astrophysics Mat Page Mullard Space Science Lab, UCL 7. Supernova Remnants.
The “youngest” Ia SNR in the Galaxy. The best to study early phase of Type Ia Cosmic Ray acceleration at the Shell The best to study the cosmic ray origin.
High Energy Observational Astrophysics. 1 Processes that emit X-rays and Gamma rays.
A smoothed hardness map of the hotspots of Cygnus A (right) reveals previously unknown structure around the hotspots in the form of outer and inner arcs.
The X-Ray Universe 2008, Granada, Spain, May 28, 2008 Chandra Monitoring of X-Ray Evolution of SNR 1987A Sangwook Park Department of Astronomy & Astrophysics.
Netherlands Organisation for Scientific Research High resolution X-ray spectroscopy of the Interstellar Medium (ISM) C. Pinto (SRON), J. S. Kaastra (SRON),
The soft N132D to study the gain of the EPIC-pn camera
A large XMM-Newton project on SN 1006
DISCRETE X-RAY SOURCE LUMINOSITY FUNCTION (LF):
A large XMM-Newton project on SN 1006
XMM-Newton Observation of the composite SNR G0. 9+0
LINERs: The X-ray Perspective John McNulty
Presentation transcript:

Strange Galactic Supernova Remnants G (the Tornado) & G in X-rays Anant Tanna Physics IV 2007 Supervisor: Prof. Bryan Gaensler

Supernova Remnants (SNRs) Formed from supernova explosion (~10 44 J) shockwave sweeping up interstellar medium (ISM). Important because: –Nucleosynthesis generates the heaviest elements. –Heat up ISM, putting energy into the Galaxy. –Shocks can trigger star formation. –Accelerate cosmic rays. –Reveal structure of ISM.

Supernova Remnants Common types: –Shell-like and Crab-like. SNR has three phases: –Free expansion. –Adiabatic phase. –Radiative phase. Eventually disperses into ISM.

Adiabatic Phase Total remnant energy taken as constant. Phase begins when hot reverse shock fills interior. Age found from: Remnant radius determined by the cooler forward shock is given by. (1) (2)

XMM-Newton –Three X-ray telescopes, each with a CCD camera, forming the EPIC instruments PN, MOS1 and MOS2. –Chandra has maximum collecting area of 800 cm 2, XMM has 4500 cm 2. Observations: –Each camera produces an event list used to make images and extract spectra. Spectra analysed using XSPEC. Lower spatial and spectral resolution than Chandra, but:

G Bright! Four regions in X-rays, but region 2 has no radio counterpart. –Is it a part of this complex object? Spectra extraction was easy.

Clearly thermal spectrum (right). Spectral fit for region 1: –Absorbed NEI  OK. Tested absorbed VNEI  improved fit, except for Fe line. Added VNEI for Fe only  improved fit. Added NEI  cooler forward shock identified and fit improved. –χ 2 / ν ~ 1.5. G Spectra Mg Si S Ar Ca Fe Upper (PN) spectrum has ~46000 counts. All three spectra binned at 100 counts per channel.

G Spectra Same model applied to other three regions, giving χ 2 / ν values of 1.2, 1.1 and 1.4 for regions 2 to 4. Interstellar absorption agreed for regions 1, 3 and 4 at 3.6 x cm -2, but region 2 is more absorbed 4.6 x cm -2 for this model. Region 2 spectrum (right) clearly different, but power law doesn’t fit  absorbed black body gives excellent fit. G Spectra

Plasma temperature and ionisation timescale for the reverse shock varied between regions. Plasma temperature and ionisation timescale for the forward shock agreed for regions 1, 3 and 4. –Plasma temp. = 0.31 keV (~3.1 million K) –τ = 4.2 x s cm -3. Can now derive age of remnant and supernova explosion energy! G Spectra (1) (2) Distance to G is kpc  R = pc. Equation 1  t = yr.  n = cm -3  n 0 = cm -3. Finally, equation 2 implies that E sn is between 4.4 x and 2.5 x J.

The Tornado Faint, extended X-ray component coincident with Head. Extracting spectra required detailed background subtraction (tedious). Fitting spectra: –Absorbed blackbody  poor fit. –Absorbed power law  photon index of ~6. –Absorbed NEI  good fit with χ 2 / ν ~ 1.0. Strong absorbing column, n H ~5.1 x cm -2.

NEI Model and Tornado Spectrum NEI has two very important parameters: –Plasma temperature, –Ionisation timescale τ = t x n (in s cm -3 ) This spectrum gives τ < 9 x indicating the detected plasma has not equilibrated. 2 nd absorbed NEI added to find cooler forward shock (ie. τ > ~9 x ) but was not detected (absorbed)  can’t derive E sn. Si S This spectrum has ~1800 counts, binned at 30 counts per channel.

Conclusions The Tornado Head is almost certainly a thermal SNR. Tail, not detected in X-rays, requires further work to be explained. G A very bright, very young thermal SNR. The bright point source in region 2 is a possible neutron star. These results are not just important for the ecology of the Milky Way, but suggest that: Simple shell-like SNRs may not be the norm, and Complex objects like these may better represent how SNRs interact with the ISM.