Astroparticle physics 2. The Milky Way interstellar medium and cosmic-rays Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica.

Slides:



Advertisements
Similar presentations
New Insights into the Acceleration and Transport of Cosmic Rays in the Galaxy or Some Simple Considerations J. R. Jokipii University of Arizona Presented.
Advertisements

Fermi LAT Observations of Galactic and Extragalactic Diffuse Emission Jean-Marc Casandjian, on behalf of the Fermi LAT collaboration 7 questions addressed.
The Galactic diffuse emission Sabrina Casanova, MPIK Heidelberg XXth RENCONTRES DE BLOIS 18th - 23rd May 2008, Blois.
ASTR112 The Galaxy Lecture 11 Prof. John Hearnshaw 13. The interstellar medium: dust 13.5 Interstellar polarization 14. Galactic cosmic rays 15. The galactic.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
X-ray observations of Dark Particle Accelerators Hiro Matsumoto (KMI, Nagoya University) 1.
ASTR100 (Spring 2008) Introduction to Astronomy The Milky Way Prof. D.C. Richardson Sections
Fermi-LAT Study of Cosmic-Ray Gradient in the Outer Galaxy --- Fermi-LAT view of the 3 rd Quadrant --- Tsunefumi Mizuno (Hiroshima Univ.), Luigi Tibaldo.
X-ray observations of Dark Particle Accelerators Hiro Matsumoto (KMI, Nagoya University) 1.
Galactic Diffuse Gamma-ray Emission, the EGRET Model, and GLAST Science Stanley D. Hunter NASA/GSFC Code 661
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
Potential Positron Sources around Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/11/29.
The Mass of the Galaxy We can use the orbital velocity to deduce the mass of the Galaxy (interior to our orbit): v orb 2 =GM/R. This comes out about 10.
Clicker Question: The HR diagram is a plot of stellar A: mass vs diameter. B: luminosity vs temperature C: mass vs luminosity D: temperature vs diameter.
Building the Hertzsprung-Russell (H-R) Diagram Use the worksheets passed out in class.
Pasquale Blasi INAF/Arcetri Astrophysical Observatory 4th School on Cosmic Rays and Astrophysics UFABC - Santo André - São Paulo – Brazil.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
© 2010 Pearson Education, Inc. Chapter 19 Our Galaxy.
Nebular Astrophysics.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae 2013/12/18 Speaker : Yu-Hsun Cheng Professor: Yosuke Mizuno.
Astroparticle physics 4. Astroparticles: rulers of the Universe? (or almost...) Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica.
Molecular clouds and gamma rays
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
The TeV view of the Galactic Centre R. Terrier APC.
The Interstellar Medium and Interstellar Molecules Ronald Maddalena National Radio Astronomy Observatory.
High-energy electrons, pulsars, and dark matter Martin Pohl.
Suzaku Study of X-ray Emission from the Molecular Clouds in the Galactic Center M. Nobukawa, S. G. Ryu, S. Nakashima, T. G. Tsuru, K. Koyama (Kyoto Univ.),
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
Fermi Symposium, Washington, DCVERITAS Observations of SNRs and PWNe B. Humensky, U. of Chicago Brian Humensky for the VERITAS Collaboration November 4,
Roland Crocker Monash University The  -ray and radio glow of the Central Molecular Zone and the Galactic centre magnetic field.
Interaction of Cosmic-Rays with the Solar System Bodies as seen by Fermi LAT Monica Brigida Bari University For the Fermi LAT Collaboration.
Astroparticle physics 3. Supernovae, neutrinos and high energy cosmic-rays in the local Universe Alberto Carramiñana Instituto Nacional de Astrofísica,
The X-ray Universe Sarah Bank Presented July 22, 2004.
Discovery of  rays from Star-Forming Galaxies New class of nonthermal sources/gamma-ray galaxies (concept of temperature breaks down at high energies)
Tsunefumi Mizuno 1 Fermi_Diffuse_ASJ_2010Mar.ppt Fermi-LAT Study of Galactic Cosmic-Ray Distribution -- CRs in the Outer Galaxy -- Tsunefumi Mizuno Hiroshima.
Lecture 30: The Milky Way. topics: structure of our Galaxy structure of our Galaxy components of our Galaxy (stars and gas) components of our Galaxy (stars.
Observations of the Large Magellanic Cloud with Fermi Jürgen Knödlseder (Centre d’Etude Spatiale des Rayonnements) On behalf of the Fermi/LAT collaboration.
SN 1987A as a Possible Source of Cosmic Rays with E 0 < eV by Yakutsk EAS Array Data A.V. Glushkov, L.T. Ksenofontov, M.I. Pravdin Yu.G. Shafer Institute.
MA4: HIGH-ENERGY ASTROPHYSICS Critical situation of manpower : 1 person! Only «free research» based in OAT. Big collaborations based elsewhere (Fermi,
Gamma-ray emission from molecular clouds: a probe of cosmic ray origin and propagation Sabrina Casanova Ruhr Universitaet Bochum & MPIK Heidelberg, Germany.
Liverpool: 08-10/04/2013 Extreme Galactic Particle Accelerators The case of HESS J Stefan Ohm ( Univ. of Leicester), Peter Eger, for the H.E.S.S.
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
Characterizing cosmic ray propagation in massive star forming regions: the case of 30 Dor and LMC E. J. Murphy et al. Arxiv:
Cosmic Rays2 The Origin of Cosmic Rays and Geomagnetic Effects.
Chapter 19 Our Galaxy.
ASTR112 The Galaxy Lecture 2 Prof. John Hearnshaw 2. Constituents of the Galaxy 3. Structure of the Galaxy 4. The system of galactic coordinates 5. Stellar.
Diffuse Emission and Unidentified Sources
ISM X-ray Astrophysics Randall K. Smith Chandra X-ray Center.
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Cosmic Rays High Energy Astrophysics
Bremen, Germany Patrick Slane (CfA) COSPAR 2010: E19 Fermi Studies of Collaborators: D. Castro S. Funk Y. Uchiyama J. D. Gelfand O. C. de Jager A. Lemiere.
Propagation of CR electrons and the interpretation of diffuse  rays Andy Strong MPE, Garching GLAST Workshop, Rome, 17 Sept 2003 with Igor Moskalenko.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Gamma-ray Measurements of the distribution of Gas and Cosmic Ray in the Interstellar Space Yasushi Fukazawa Hiroshima University.
Astroparticle Physics (1)  Introduction - Origin of Elements - Big Bang - Dark Matter - Cosmic Microwave Background Radiation - Cosmic Particle Accelerators.
Gamma-Ray Emission from Pulsars
Alexander Kappes Erlangen Centre for Astroparticle Physics XIV Lomonosov Conference Moscow, August 25, 2009 High-energy neutrinos from Galactic sources.
Fermi LAT Observations of Galactic and Extragalactic Diffuse Emission Jean-Marc Casandjian, on behalf of the Fermi LAT collaboration 7 questions addressed.
ASTR112 The Galaxy Lecture 12 Prof. John Hearnshaw 16. Evolution of the Galaxy 16.1 Star formation 16.2 Exchange of material between stars and ISM 16.3.
COSMIC RAYS. At the Earth’ Surface We see cascades from CR primaries interacting with the atmosphere. Need to correct for that to understand their astronomical.
SNRs: (& PWNe, SBs, …) Future Science Objectives and Instrument requirements Terri Brandt NASA / Goddard Fermi Symposium GammaSIG Session 13 Nov 2015.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
GLAST Observations of Supernova Remnants and Pulsar Wind Nebulae Bryan Gaensler The University of Sydney / Harvard-Smithsonian Center for Astrophysics.
High Energy Astrophysics
Cosmic Rays & Supernova Remnants love story: The Importance
Chapter 19 Our Galaxy.
High Energy emission from the Galactic Center
Particle Acceleration in the Universe
Presentation transcript:

Astroparticle physics 2. The Milky Way interstellar medium and cosmic-rays Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica Tonantzintla, Puebla, México Xalapa, 3 August 2004

These presentations Available (soon!) as  alberto/cursos/ap2004_1a.ppt  alberto/cursos/ap2004_1b.ppt  alberto/cursos/ap2004_2.ppt  alberto/cursos/ap2004_3.ppt  alberto/cursos/ap2004_4.ppt

The interstellar medium of the Galaxy ISM: gas, dust, magnetic field, cosmic-rays. Feedack: {gas (SF)  stars (Winds, Sne)  gas} Stars enrich (& steer) gas; gas forms new stars. Pressure equilibrium. GCDisk Halo 15 kpc 300 pc

A little note: Oort’s limit Statistical study of motion of stars in the Solar neighborhood: first evidence of “missing mass”. Can be baryonic (or it can be non-baryonic...).

ISM clouds Most of the ISM (70%) is HI, H 2, HII: –diffuse HI clouds: 30 to 80 K, 100 to 800 cm -3, 1 to 100 M . –translucent molecular clouds: 15 to 50 K, 500 to 5000 cm - 3, 3 to 100 M , several pc accross. –giants molecular clouds: 20 K, 100 to 300 cm -3, up to 10 6 M , 50 pc GMC cores : 100 to 200 K, 10 7 to 10 9 cm -3, 10 to 1000 M , 0.05 to 1 pc. – Bok globules : 10 K, n>10 4 cm -3, 1 to 1000 M , 1pc, (all?) harbour young stars in their center. –HII regions: ionized by massive near star.

Dark clouds Brighter cloud!

Stars About of them in the Milky Way (M g > 1.5  M  ). Form, live and die: –M<8 M  : pufff... –M>8 M  : bang! –M>30 M  : bang!? pufff? bang!!? SN 1987A

Stellar remnants Planetary nebula + white dwarf: –Vexp  100 km/s Supernova remnant (SNR) + neutron star: –Vexp > 1000 km/s

E  1 keV

At 408 MHz

Cosmic-rays Energetic particles in Earth’s environment Basic questions: –Energy? –Composition? –Origin? –Isotropy?

Cosmic-rays: measured abundances Charged particles: 99% nuclei + 1% electrons. Heavy nuclei more abundant in CRs than solar. {Li, Be, B} and {Sc, V, Ti,...} high C/O and Fe spallation Cross sections spallation  X = 5 to 10 g cm -2  L  1000 kpc

Cosmic-rays: energy spectrum Power-law: Secondaries (B) have steeper spectra than primaries (C,O).

Cosmic-rays: energy density Local ISM Spectrum inferred u cr  1eV cm -3 (0.83 for p alone) CR and Galactic energetics: Are SN the sources of (Galactic) CR? –Shock acceleration models: Fermi mechanism ok! –Need the smoking gun...

Cosmic-rays: propagation Cosmic-rays do not propagate in straight lines: trapped by Galactic magnetic field (average 3  G) Transport equation: –Leaky box model: CR travel path: Proton injection spectrum: – 10 Be (mean life 3.9 Myrs) analysis: (Garcia-Muñoz, Mason & Simpson 1977)

Galactic radio emission Galactic radio emission = e-synchrotron Inferred electron spectrum: 1 eV cm -3 –n(E)  E for 70 MeV to 1200 MeV –n(E)  E -3.0 above 1 GeV Electrons 1% of Earth’sCR spectrum.

Cosmic-ray nuclei and matter Galactic  -ray emission model: –e-bremssthralung –pion production (secondary e produced) –e-inverse compton Model needs HI & CO data input. Hunter et al. 1997

Galactic  -ray spectrum  0 production spectrum  68 MeV bump Galactic emission fairly well modelled. Evidence for electrons and nuclei. Strong, Moskalenko & Reimer 2004

Nearby galaxies Only LMC detected as (weak)  -ray source. Limits on SMC, M31, nearby starburst  cosmic- rays (E<10 15 eV) are Galactic (local).

Cosmic-ray and  -ray sources High energy sources must accelerate particles to produce  -rays.

Galactic  -ray sources Solar flare Pulsars (aside: bound on photon mass) Unidentified Galactic sources: young & old –SNR positional coincidences (so, maybe....) –young & old radio quiet pulsars –wind nebulae –microquasars

Photon mass Crab pulsar pulse coherent from (at least) 100 MHz to 1 GeV. Pulse period = 33 ms. Pulse broadening < 5% Distance = 2 kpc(1 pc = 3  m) What is the limit on the mass of to photon?

Cerenkov observations Certain detection of Crab nebula. Probable PSR , Vela, SN1006. Results not fully consistent (Č to Č, Č to EG) Weekes (2000)

Crab spectrum Kuiper et al. (2001) Nebula: can fit synchrotron + inverse Compton. Pulsar: syncrotron + curvature + inverse Compton.

Rotating neutron star: R * =10 km, M * =1.44 M , I = g/cm 2 Pulsar energetics: the Crab 

Pulsars >1000 radio pulsars know Power: up to few erg/s (Crab) per pulsar vs 2  erg/s (CRs)  Probably sufficient Pulsar models: pure electron acceleration –in vacuum: eV available; –in e + e - magnetosphere: only a “fraction” Romani 1994

What do we need? The hadronic  0 smoking gun! And GLAST

Very high energy cosmic-rays Pulsar and Sne models can only reach eV (the knee) At 100 TeV gyro-radius  thickness of Galactic disc. To continue...