Chemistry 6440 / 7440 Molecular Mechanics. Resources Grant and Richards, Chapter 3 Leach, Chapter 3 Jensen, Chapter 2 Cramer, Chapter 2 Burkert and Allinger,

Slides:



Advertisements
Similar presentations
Homework 2 (due We, Feb. 5): Reading: Van Holde, Chapter 1 Van Holde Chapter 3.1 to 3.3 Van Holde Chapter 2 (we’ll go through Chapters 1 and 3 first. 1.Van.
Advertisements

Introduction to Molecular Orbitals
Force Field of Biological System 中国科学院理论物理研究所 张小虎 研究生院《分子建模与模拟导论》课堂 2009 年 10 月 21 日.
Questions 1) Are the values of r0/theta0 approximately what is listed in the book (in table 3.1 and 3.2)? -> for those atom pairs/triplets yes; 2) In the.
Molecular Modeling: Molecular Mechanics C372 Introduction to Cheminformatics II Kelsey Forsythe.
Molecular Modeling The compendium of methods for mimicking the behavior of molecules or molecular systems.
Theoretical Models “The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely.
Molecular Mechanics Force Fields Basic Premise If we want to study a protein, piece of DNA, biological membranes, polysaccharide, crystal lattice, nanomaterials,
Chemistry 6440 / 7440 Semi-Empirical Molecular Orbital Methods.
Quantum Mechanics and Force Fields Hartree-Fock revisited Semi-Empirical Methods Basis sets Post Hartree-Fock Methods Atomic Charges and Multipoles QM.
Computational Chemistry
Lawrence Hunter, Ph.D. Director, Computational Bioscience Program University of Colorado School of Medicine
Molecular Dynamics, Monte Carlo and Docking Lecture 21 Introduction to Bioinformatics MNW2.
Molecular Modeling of Crystal Structures molecules surfaces crystals.
Lecture 3 – 4. October 2010 Molecular force field 1.
Case Western Reserve University
1 Molecular Simulation 黃鎮剛 交通大學 生物科技系及生物資訊所. 2 Empirical Force Field
Molecular Mechanics force fields minimization. Force Fields good review: MacKerell (2004) JCompChem, 25:1584 FF typically contains terms for: –bonds and.
Molecular Modeling Part I Molecular Mechanics and Conformational Analysis ORG I Lab William Kelly.
8/30/2015 5:26 PM Homology modeling Dinesh Gupta ICGEB, New Delhi.
Introduction. What is Computational Chemistry?  Use of computer to help solving chemical problems Chemical Problems Computer Programs Physical.
Molecular Modeling Fundamentals: Modus in Silico C372 Introduction to Cheminformatics II Kelsey Forsythe.
CHM 456 Organic Chemistry Carbon Compounds and Chemical Bonds.
1. Ionic Compounds They are formed by the transfer of one or more valence electrons from one atom to another Electropositive atoms: give up electrons.
CHE 311 Organic Chemistry I Dr. Jerome K. Williams, Ph.D. Saint Leo University.
Molecular Modeling Part I. A Brief Introduction to Molecular Mechanics.
Dinamica Molecular y el modelamiento de macromoleculas
Algorithms and Software for Large-Scale Simulation of Reactive Systems _______________________________ Ananth Grama Coordinated Systems Lab Purdue University.
Computational Chemistry for Dummies
02/03/10 CSCE 769 Dihedral Angles Homayoun Valafar Department of Computer Science and Engineering, USC.
Chem 1140; Molecular Modeling Molecular Mechanics Semiempirical QM Modeling CaCHE.
CZ5225 Methods in Computational Biology Lecture 4-5: Protein Structure and Structural Modeling Prof. Chen Yu Zong Tel:
Lecture 11: Potential Energy Functions Dr. Ronald M. Levy Originally contributed by Lauren Wickstrom (2011) Statistical Thermodynamics.
1.Solvation Models and 2. Combined QM / MM Methods See review article on Solvation by Cramer and Truhlar: Chem. Rev. 99, (1999)
Molecular Mechanics Part 2
COVALENT BONDING Chapter 16 AND THE SUBJECTS ARE… THE NAME IS BOND, COVALENT BOND SINGLES, DOUBLES & TRIPPPLES COORDINATE COVALENT BONDS RESONATE THIS!
Molecular bonding. Molecular Bonding and Spectra The Coulomb force is the only one to bind atoms. The combination of attractive and repulsive forces creates.
Potential energy surface, Force field & Molecular Mechanics 3N (or 3N-6 or 3N-5) Dimension PES for N-atom system x E’ =  k i (l i  l 0,i ) +  k i ’
Common Potential Energy Functions of Separation Distance The Potential Energy function describes the energy of a particular state. When given as a function.
Molecular simulation methods Ab-initio methods (Few approximations but slow) DFT CPMD Electron and nuclei treated explicitly. Classical atomistic methods.
Molecular Mechanics Studies involving covalent interactions (enzyme reaction): quantum mechanics; extremely slow Studies involving noncovalent interactions.
Covalent interactions non-covalent interactions + = structural stability of (bio)polymers in the operative molecular environment 1 Energy, entropy and.
MODELING MATTER AT NANOSCALES 3. Empirical classical PES and typical procedures of optimization Classical potentials.
Homework 2 (due We, Feb. 1): Reading: Van Holde, Chapter 1 Van Holde Chapter 3.1 to 3.3 Van Holde Chapter 2 (we’ll go through Chapters 1 and 3 first. 1.Van.
1 Statistical Mechanics and Multi- Scale Simulation Methods ChBE Prof. C. Heath Turner Lecture 18 Some materials adapted from Prof. Keith E. Gubbins:
1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo
LSM3241: Bioinformatics and Biocomputing Lecture 6: Fundamentals of Molecular Modeling Prof. Chen Yu Zong Tel:
Hydro-pathy/phobicity/philicity One of the most commonly used properties is the suitability of an amino acid for an aqueous environment Hydropathy & Hydrophobicity.
Quantum Mechanics/ Molecular Mechanics (QM/MM) Todd J. Martinez.
Intermolecular Interactions
Developing a Force Field Molecular Mechanics. Experimental One Dimensional PES Quantum mechanics tells us that vibrational energy levels are quantized,
Molecular Mechanics (Molecular Force Fields). Each atom moves by Newton’s 2 nd Law: F = ma E = … x Y Principles of M olecular Dynamics (MD): F =
Chapter 6 NOR AKMALAZURA JANI CHM 138 BASIC CHEMISTRY.
Molecular dynamics (MD) simulations  A deterministic method based on the solution of Newton’s equation of motion F i = m i a i for the ith particle; the.
Lecture 7: Molecular Mechanics: Empirical Force Field Model Nanjie Deng Structural Bioinformatics II.
1 כימיה אורגנית לתלמידי רפואה, מדעי הרפואה, ורפואת שיניים ד"ר עידית תשובה המחלקה לכימיה אי אורגנית בניין לוס-אנג'לס, חדר
Structure and Properties of Organic Molecules
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc. Permission required.

Chapter 2 Copyright © 2010 Pearson Education, Inc. Organic Chemistry, 7 th Edition L. G. Wade, Jr. Structure and Properties of Organic Molecules.
Molecular Modeling: Molecular Mechanics C372 Introduction to Cheminformatics II Kelsey Forsythe.
ReaxFF for Vanadium and Bismuth Oxides
Van der Waals dispersion in density functional theory
Chapter 2 Molecular Mechanics
State of Matters and Intermolecular Forces
Algorithms and Software for Large-Scale Simulation of Reactive Systems
Molecular simulation methods
Algorithms and Software for Large-Scale Simulation of Reactive Systems
Stereochemistry of Alkanes and Cycloalkanes
Physical Chemistry Chapter VI Interaction between Molecules 2019/5/16
Presentation transcript:

Chemistry 6440 / 7440 Molecular Mechanics

Resources Grant and Richards, Chapter 3 Leach, Chapter 3 Jensen, Chapter 2 Cramer, Chapter 2 Burkert and Allinger, Molecular Mechanics (ACS Monograph 177, 1982) Bowen and Allinger, Rev. Comput. Chem. 2, 81 (1991)

Empirical Force Fields PES calculated using empirical potentials fitted to experimental and calculated data composed of stretch, bend, torsion and non-bonded components E = E str + E bend + E torsion + E non-bond e.g. the stretch component has a term for each bond in the molecule

Empirical Force Fields potential energy curves for individual terms are approximately transferable (e.g. CH stretch in ethane almost the same as in octane) terms consist of functional forms and parameters parameters chosen to fit structures (in some cases also vibrational spectra, steric energies)

Empirical Force Fields a force field is comprised of functional forms, parameters and atom types each atomic number is divided into atom types, based on bonding and environment (e.g. carbon: sp 3, sp 2, sp, aromatic, carbonyl, etc.) parameters are assigned based on the atom types involved (e.g. different C-C bond length and force constant for sp 3 -sp 3 vs sp 2 -sp 2 )

Empirical Force Fields examples: MM2, MM3, Amber, Sybyl, Dreiding, UFF, MMFF, etc. differ by the functional forms and parameters not mix and match - each developed to be internally self consistent some force field use united atoms (i.e. H's condensed into the heavy atoms) to reduce the total number of atoms (but with a reduction in accuracy)

Empirical Force Fields molecular mechanics force fields differ from force fields used for vibrational analysis, and analytical potential energy surfaces used for dynamics - these are custom fit for individual systems molecular mechanics force fields are designed to be transferable, and can be used for broad classes of molecular systems (but stay within the scope of the original parameterization)

Bond Stretch Term many force fields use just a quadratic term, but the energy is too large for very elongated bonds E str =  k i (r – r 0 ) 2 Morse potential is more accurate, but is usually not used because of expense E str =  D e [1-exp(-  (r – r 0 )] 2 a cubic polynomial has wrong asymptotic form, but a quartic polynomial is a good fit for bond length of interest E str =  { k i (r – r 0 ) 2 + k’ i (r – r 0 ) 3 + k” i (r – r 0 ) 4 } The reference bond length, r 0, not the same as the equilibrium bond length, because of non-bonded contributions

Comparison of Potential Energy Functions for Bond Stretch

Angle Bend Term usually a quadratic polynomial is sufficient E bend =  k i (  –  0 ) 2 for very strained systems (e.g. cyclopropane) a higher polynomial is better E bend =  k i (  –  0 ) 2 + k’ i (  –  0 ) 3 + k” i (  –  0 ) alternatively, special atom types may be used for very strained atoms

Torsional Term most force fields use a single cosine with appropriate barrier multiplicity, n E tors =  V i cos[n(  –  0 )] some use a sum of cosines for 1-fold (dipole), 2- fold (conjugation) and 3-fold (steric) contributions E tors =  { V i cos[(  –  0 )] + V’ i cos[2(  –  0 )] + V” i cos[3(  –  0 )] }

Torsional potential for n-butane as a sum of 1-fold, 2-fold and 3-fold terms

Out-of-Plane Bending Term angle-to-plane or distance-to-plane can be used for the out-of- plane bending coordinate improper torsions can also used for out-of- plane bends chirality constraints are required in united atom force fields

Non-Bonded Terms van der Waals, electrostatic and hydrogen bonded interactions E non-bond = E vdW + E es + E Hbond repulsive part of van der Waals potential –due to overlap of electron distributions (Pauli exclusion) –rises very steeply (steric repulsion) attractive part of van der Waals potential –due to London or dispersion forces –instantaneous dipole - induce dipole interaction –proportional to r -6

Non-Bonded Terms Lennard-Jones potential –E vdW =  4  ij ( (  ij / r ij ) 12 - (  ij / r ij ) 6 ) –easy to compute, but r -12 rises too rapidly Buckingham potential –E vdW =  A exp(-B r ij ) - C r ij -6 –QM suggests exponential repulsion better, but is harder to compute tabulate  and  for each atom –obtain mixed terms as arithmetic and geometric means –  AB = (  AA +  BB )/2;  AB = (  AA  BB ) 1/2

Comparison of Non-Bonded Potential Functions

Electrostatic Interactions E es =  Q i Q j / r ij atom centered charges can be computed from molecular orbital calculations charges can be obtained from population analysis, electrostatic potentials or atomic polar tensors however: –MO calculations are expensive –charges are not uniquely defined –charges may vary with conformation

Electrostatic Interactions in addition to atom centered charges, one can also include atom centered multipoles for better fit to electrostatic potentials alternatively, one can use off-center charges for better representation of electrostatic potentials around lone pairs cheaper (but less accurate) charges can be calculated using the method of electronegativity equalization can also include polarization effects – need to compute energy iteratively (expensive and not that much of an improvement) can include polarization effects in an average way with distance dependent dielectric constant E es =  Q i Q j / D(r ij ) r ij

Hydrogen Bonding Interactions some force fields add extra term E Hbond =  A r ij C r ij -10 –however, this requires hydrogen bonds to be identified before the calculation is carried out other force fields just use a balance between electrostatic and non-bonded terms

Cross Terms more accurate representation of the potential energy surface (e.g. for vibrational frequencies) requires interaction terms between stretch, bend and torsion the most important terms are E str-str =  k ij (r i – r i0 ) (r j – r j0 ) E str-bend =  k ij (r i – r i0 ) (  j –  j0 ) E bend-bend =  k ij (  i –  i0 ) (  j –  j0 ) E bend-bend-tors =  V ij (  i –  i0 ) (  j –  j0 ) cos[n(  ij –  ij0 )]

Cross terms used in some MM force fields

Parameterization difficult, computationally intensive, inexact fit to structures (and properties) for a training set of molecules recent generation of force fields fit to ab initio data at minima and distorted geometries trial and error fit, or least squares fit (need to avoid local minima, excessive bias toward some parameters at the expense of others) different parameter sets and functional forms can give similar structures and energies but different decomposition into components don't mix and match

Energetics steric energy –energy relative to an artificial structure with no interactions –can be used to compare different conformers of same molecule strain energy –energy relative to a strainless molecule –e.g. all trans hydrocarbons (note: steric energy not necessarily zero) very dangerous to decompose energy into components (stretch, bend torsion, non-bonded etc.) –different force fields can give similar energies and structures but quite different components heat of formation –average bond energies added to the strain energy to get approximate atomization energy –heat of formation of the molecule = atomization energy of the molecule – heat of formation of the atoms

Applications good geometries and relative energies of conformers of the same molecule (provided that electronic interactions are not important) effect of substituents on geometry and strain energy well parameterized for organics, less so for inorganics specialty force fields available for proteins, DNA, for liquid simulation molecular mechanics cannot be used for reactions that break bonds (EVB methods can be used to construct reactive potentials based on molecular mechanics) useful for simple organic problems: ring strain in cycloalkanes, conformational analysis, Bredt's rule, etc. high end biochemistry problems: docking of substrates into active sites, refining x-ray structures, determining structures from NMR data, free energy simulations