PreAP Chemistry Chapter 4 Notes

Slides:



Advertisements
Similar presentations
Ch. 13 Electrons in Atoms Ch Models of the Atom
Advertisements

Arrangement of Electrons in Atoms
Electron Configuration and New Atomic Model Chapter 4.
Chapter 4 Arrangement of Electrons in Atoms
Arrangement of Electrons in Atoms The Development of a New Atomic Model.
Rutherford’s model -Shows where protons & neutrons are -Not good at showing the location of electrons.
The Development of a New Atomic Model.
Electrons and Quantum Mechanics
Electronic Structure of Atoms Chapter 6 BLB 12 th.
Chapter 5 Electrons in Atoms Wave and Particle Models of Light
Chapter 5 Preview Questions are Due on Monday! Section 5.1 The Development of a New Atomic Model Previously, Rutherford reshaped our thoughts of the.
Concept #4 “Electrons in the Atom” Honors Chemistry 1.
Where are the electrons ? Rutherford found the nucleus to be in the center. He determined that the atom was mostly empty space. So, how are the electrons.
Chapter 13 Electrons in Atoms
Chapter 10 Modern Atomic Theory. Greek Idea l Democritus and Leucippus l Matter is made up of indivisible particles l Dalton - one type of atom for each.
Chemistry Chapter 4 Arrangement of Electrons in Atoms
1 Ch 4 Electron Energies. 2 Electromagnetic Spectrum Electromagnetic radiation is a form of energy that exhibits wave-like behavior as it travels though.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 The Development of a New Atomic Model Properties of Light.
Chapter 4 Electron Configurations. Early thoughts Much understanding of electron behavior comes from studies of how light interacts with matter. Early.
Electrons in Atoms By: Ms. Buroker. Okay … We now know that an element’s identity lies in its number of protons … but there is another particle which.
Chapter 4 Arrangement of Electrons in Atoms 4.1 The Development of a New Atomic Model.
Electronic Configurations of Atoms
Electrons in Atoms Chapter 5. Duality of Light Einstein proved that matter and energy are related E = mc 2 Einstein proved that matter and energy are.
Electrons in Atoms. Models of the Atom – A History John Dalton John Dalton atom was solid, indivisible mass atom was solid, indivisible mass J.J. Thomson.
The Modern Model of The Atom Chapter 4. Rutherford’s Model Discovered the nucleus Small dense and positive Electrons moved around in Electron cloud.
Electrons in Atoms Chapter 5 General Chemistry. Objectives Understand that matter has properties of both particles and waves. Describe the electromagnetic.
Chapter 13 Electrons in Atoms C. Smith. I. Models of the Atom A. The Evolution of Atomic Models 1. There are four major models of the atom that have been.
The Bohr Model and the Quantum Mechanical Model of the Atom
CHAPTER 4: Section 1 Arrangement of Electrons in Atoms
Chapter 4 Arrangement of Electrons in Atoms. 4-1 The Development of the New Atomic Model Rutherford’s atomic model – nucleus surrounded by fast- moving.
Chapter 12 Electrons in Atoms. Greek Idea lDlDemocritus and Leucippus l Matter is made up of indivisible particles lDlDalton - one type of atom for each.
Ernest Rutherford’s Model l Discovered dense positive piece at the center of the atom- “nucleus” l Electrons would surround and move around it, like planets.
Chapter 5: Electrons in Atoms. Why focus on electrons? Scientists wanted to know why certain elements behaved similarly to some elements and differently.
Chemistry Unit 2: the 2 nd half! Electrons and their Properties.
Enriched Chemistry Chapter 4 – Arrangement of Electrons in Atoms
Light and Energy Electromagnetic Radiation is a form of energy that emits wave-like behavior as it travels through space. Examples: Visible Light Microwaves.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Table of Contents Chapter 4 Arrangement of Electrons in Atoms Section.
Electrons in Atoms Chapter Wave Nature of Light  Electromagnetic Radiation is a form of energy that exhibits wavelike behavior as it travels through.
Chapter 11 Notes Electrons in Atoms: Modern Atomic Theory.
Properties of Light Electromagenetic Spectrum. Electromagnetic Spectrum Types of electromagnetic radiation -the range containing all of the possible frequencies.
The Development of A New Atomic Model
Unit 4 Energy and the Quantum Theory. I.Radiant Energy Light – electrons are understood by comparing to light 1. radiant energy 2. travels through space.
Bohr’s Model Rutherford’s model didn’t explain the arrangement of electrons around the nucleus.
Electrons in Atoms Chapter 5. Section 5.1 Light and Quantized Energy.
CHAPTER 11 NOTES MODERN ATOMIC THEORY RUTHERFORD’S MODEL COULD NOT EXPLAIN THE CHEMICAL PROPERTIES OF ELEMENTS.
Light, Quantitized Energy & Quantum Theory CVHS Chemistry Ch 5.1 & 5.2.
Chapter 4 © Houghton Mifflin Harcourt Publishing Company Section 1 The Development of a New Atomic Model Properties of Light The Wave Description of Light.
E LECTRONS IN A TOMS Chapter 5. L IGHT AND Q UANTIZED E NERGY Nuclear atom and unanswered questions Scientists found Rutherford’s nuclear atomic model.
Chapter 4 Electron Configurations. Waves Today scientists recognize light has properties of waves and particles Waves: light is electromagnetic radiation.
Chapter 5.  Energy transmitted from one place to another by light in the form of waves  3 properties of a wave;  Wavelength  Frequency  Speed.
Light Light is a kind of electromagnetic radiation, which is a from of energy that exhibits wavelike behavior as it travels through space. Other forms.
CHAPTER 4 CHEMISTRY. PROPERTIES OF LIGHT (P91-93) Originally thought to be a wave It is one type of ELECTROMAGNETIC RADIATION (exhibits wavelike behavior.
Chapter 4 Electrons In Atoms.
Light, Quantitized Energy & Quantum Theory EQ: What does the Modern Atom look like? CVHS Chemistry Ch 5.
Arrangement of Electrons in Atoms
Click a hyperlink or folder tab to view the corresponding slides.
5-1 Quantum Theory of the atom
Electrons In Atoms.
Chemistry EM spectrum notes
Chapter 13 Electrons in Atoms.
Electrons in Atoms.
EM spectrum and electron conf NOTES
Electromagnetic spectrum
The Quantum Model Chapter 4.
Electrons in Atoms Chapter 5.
Chemistry Chapter 4 Notes
Electrons in Atoms Chapter 5.
Electromagnetic spectrum
Arrangements of Electrons in Atoms
Development of a New Atomic Model
Presentation transcript:

PreAP Chemistry Chapter 4 Notes

Section 4.1 The Development of a New Atomic Model Previously, Rutherford reshaped our thoughts of the atom by showing the protons were located in the nucleus of the atom, but he could not model for us where the electrons were, other than outside the nucleus somewhere. Fortunately, studies into the properties of light and the effects of light on matter soon gave clues to where electrons actually are.

Light is a small part of all the radiation (something that spreads from a source) called electromagnetic radiation. Electromagnetic radiation is energy in the form of waves (of electric and magnetic fields). Electromagnetic radiation includes radio waves, microwaves, infrared, visible light, X-rays, and Gamma rays. All these together are considered the Electromagnetic Spectrum.

As all the forms of electromagnetic radiation are waves, they all have similar properties. All electromagnetic radiation travels at the speed of light (c), 299,792,458 m/s (3 x 108) in a vacuum

•The crest is the top of the waves, the trough is the bottom of the waves, and the amplitude is a measurement from the rest or zero line to a crest or trough

•The wavelength (λ – lambda) is the distance between successive crests/troughs and is measured in meters (often nm = 10-9 m)

in (per second – can be written as s-1) or Hz (Hertz) •The wavelength (λ – lambda) is the distance between successive crests/troughs and is measured in meters (often nm = 10-9 m) •The frequency (ν – nu) is the number of waves that pass a point in one second and is measured in (per second – can be written as s-1) or Hz (Hertz) 1 s

Wavelength is the distance between two crests/troughs λ (lamda) is the symbol of wavelength and m is the unit Frequency is the number of crests passing through a point per second

How many hertz is the first wave? How many hertz is the second wave?

The speed of a wave is directly proportional to the wavelength and the frequency; c = λν is the formula c ν λ

Example. A certain violet light has a wavelength of 413 nm Example. A certain violet light has a wavelength of 413 nm. What is the frequency of the light?

Example. A certain violet light has a wavelength of 413 nm Example. A certain violet light has a wavelength of 413 nm. What is the frequency of the light? ν = c λ

Example. A certain violet light has a wavelength of 413 nm Example. A certain violet light has a wavelength of 413 nm. What is the frequency of the light? ν = c λ ν = 3.00 × 108 m/s 413 × 10-9 m

Example. A certain violet light has a wavelength of 413 nm Example. A certain violet light has a wavelength of 413 nm. What is the frequency of the light? ν = c λ ν = 3.00 × 108 m/s 413 × 10-9 m ν = 7.26 × 1014 Hz

Unfortunately, thinking of light as waves lead to a problem Unfortunately, thinking of light as waves lead to a problem. It was noticed that if light strikes a metal, then sometimes it could cause electrons to be emitted (leave the atoms entirely – like in a solar panel); called the photoelectric effect. If light was a wave, then all amounts of light energy should cause this to happen, but this was not the case. It always took some minimum amount of energy to get the electrons to be emitted.

This lead Max Planck to theorize that light must carry energy in basic minimum amounts that he called quanta. Like a delivery person cannot correctly deliver half a box, the electrons in atoms cannot gain a fraction of a quantum of energy (it has to be in whole numbers).

h = Planck’s constant = 6.63 × 10-34 Js ν = frequency in Hz or 1/s He proposed that this energy was directly proportional to the frequency of the electromagnetic radiation and a constant, now called Planck’s constant. E = h ν E = energy in Joules (J) h = Planck’s constant = 6.63 × 10-34 Js ν = frequency in Hz or 1/s E h ν

Example. What is the energy content of one quantum of the light with a wavelength of 413 nm?

Example. What is the energy content of one quantum of the light with a wavelength of 413 nm? Note: wavelength is not in the energy equation, but frequency is. So first, you must solve for the frequency. As seen in the earlier example, a wavelength of 413 nm gives a ν = 7.26 × 1014 Hz.

Example. What is the energy content of one quantum of the light with a wavelength of 413 nm? ν = 7.26 × 1014 Hz E = h × ν E = 6.63 × 10-34 Js × 7.26 × 1014 1/s

Example. What is the energy content of one quantum of the light with a wavelength of 413 nm? ν = 7.26 × 1014 Hz E = h × ν E = 6.63 × 10-34 Js × 7.26 × 1014 1/s

Example. What is the energy content of one quantum of the light with a wavelength of 413 nm? ν = 7.26 × 1014 Hz E = h × ν E = 6.63 × 10-34 Js × 7.26 × 1014 1/s E = 4.81 × 10-19 J

In 1905 Einstein used Plancks work to propose that electromagnetic radiation had a dual wave-particle nature. As a particle, electromagnetic radiation carries a quantum of energy of energy, has no mass, and is called a photon.

So to get an electron to emit from a metal, it must be struck with a photon having quantum energy big enough, or nothing will happen. Each metal requires a different quantum energy, thus each metal can be identified by the frequency of light needed to emit electron.

This idea was expanded upon to develop an idea of where the electrons were in an atom. It was found that low pressure gases could be trapped in a tube and electrified, and would then glow a color particular to the gas inside.

Furthermore this light could be passed into a prism, and instead of getting the entire spectrum (rainbow) of colors, only certain wavelengths of light would be seen as small bars of color, called a line-emission spectrum.

This would indicated that the electrons in an atom were only absorbing specific amounts of energy from the electricity, causing the electrons to move from their ground state (normal position close to the nucleus) to an excited state (higher energy position further away from the nucleus). The electrons do not stay in the excited state for long and fall back to their ground state, losing the energy equal to what they gained.

Quanta Video

Niels Bohr used this to develop a model of the atom where the electrons could only be in certain, specific energy level (n) orbits around the nucleus. Just as you cannot go up half a rung on a ladder, the electron could not go up a partial energy level. The electrons gained or lost enough energy to move a whole number amount of energy levels (n) away from or closer to the nucleus, or it did not move.

He calculated the amount of energy needed for an electron of hydrogen to move between each energy level (n) (which was not constant) and his calculations agreed with experimental results.

The Balmer series of hydrogen spectral lines refer to the four lines seen in the visible light region (the four colored bars). If the electron was excited to energy level (n) 6, 5, 4, or 3 and fell to energy level (n) 2, the resulting energy given off would have a frequency in the visible region of electromagnetic radiation. (One line for dropping from 6 to 2, one for 5 to 2, one for 4 to 2, and one for 3 to 2).

Line Spectra Video

However, there are other possibilities However, there are other possibilities. If the electrons drop from n=6, 5, or 4 to n=3, then the energy given off is not big enough to be seen as it is in the infrared region. These three lines in the infrared region are referred to as the Paschen series. If the electrons drop to n=1, then the five lines given off are too high in energy to be seen, as they are in the ultraviolet region. These lines are referred to as the Lyman series.

Model of Atom Review:

Thomson’s Plum Pudding Model – the atom is a ball of evenly spread positive stuff with random negative particles (electrons).

Thomson’s Plum Pudding Model – the atom is a ball of evenly spread positive stuff with random negative particles (electrons). Rutherford’s Nuclear Model – the atom has a central nucleus containing the positive particles (protons) with the electrons outside.

Thomson’s Plum Pudding Model – the atom is a ball of evenly spread positive stuff with random negative particles (electrons). Rutherford’s Nuclear Model – the atom has a central nucleus containing the positive particles (protons) with the electrons outside. Bohr’s Orbital Model – The electrons circle the nucleus in specific energy orbits, like the planets orbit the sun. Unfortunately this only works for atoms with one electron…

Quantum Mechanical Model – electrons are found in specific regions around the nucleus, but the exact location of the electrons inside the regions cannot be determined

Atom Models Video

The quantum mechanical model of the atom is built on the ideas and calculations of several scientists. • Louis deBroglie suggested a way to show that a particle could have wave like behavior with the equation: h = Planck’s constant m = mass of particle v = velocity of particle λ = h mv

• The Heisenberg Uncertainty principle states that it is impossible to know both the velocity and the location of an electron at the same time. If the position was known, then there is no way to know where it has moved to, and if the velocity is known, then there is no way to know where it was.

• Schrödinger developed wave-based equations that form the basis of the current Quantum theory, which mathematically describe the probably location of electrons, often referred to as an electron cloud. The electrons clouds describe areas around the nucleus with a 90% chance of finding the electron inside. Solving the equations has lead to Quantum Numbers, which will be studied later.

The quantum mechanical model starts with a Principal Quantum Number (n), which is the basic energy level of an electron, and often matches the period number. Possible values (currently) are 1-7.

The quantum mechanical model starts with a Principal Quantum Number (n), which is the basic energy level of an electron, and often matches the period number. Possible values (currently) are 1-7. Inside the principal quantum energy level are sublevels that correspond to different cloud shapes. The sublevels are designated as s (sharp), p (principal), d (diffuse), and f (fundamental).

Inside the sublevels are orbitals, specific regions with a 90% probability of finding electrons. • s –orbitals are spherically shaped clouds around the nucleus • p -orbitals are bar-bell shaped clouds with the nucleus between the lobes • d and f are much more complex in shape

Each sublevel has room for a different amount of electrons, because an orbital can hold two electrons, then each sublevel has a different amount of orbitals

• s –sublevel can hold 2 electrons, so it has 1 orbital (shape) • p –sublevel can hold 6 electrons, so it has 3 orbitals (shapes) • d –sublevel can hold 10 electrons, so it has 5 orbitals (shapes) • f –sublevel can hold 14 electrons, so it has 7 orbitals (shapes)

The s sublevel is simply a sphere centered on the nucleus.                                                The p sublevel has three orbitals.  These are often referred to a dumbbell shape.                                                                                                                                                      The d sublevel has five orbitals:                                                                                                                                                                                                                                                              The f sublevel has seven orbitals:                                                                                                                                                                                                                                                                                                                         

To know the maximum amount of electrons that could be in any principal quantum level (and the number of elements that could be represented) use the formula 2n2 if n=1, then

To know the maximum amount of electrons that could be in any principal quantum level (and the number of elements that could be represented) use the formula 2n2 if n=1, then 2 electrons will fit if n=4,

To know the maximum amount of electrons that could be in any principal quantum level (and the number of elements that could be represented) use the formula 2n2 if n=1, then 2 electrons will fit if n=4, then 32 electrons will fit

Section 4.3 Electron Configurations In order to show on paper where electrons are likely to be located in an atom, orbital filling diagrams and electron configurations are drawn or written. When this is done, three rules must be followed:

1. Aufbau principle – electrons fill lower energy levels first, thus 1 before 2 and s before p, etc. a. orbitals within a sublevel are equal in energy (called degenerate) b. the principal energy levels often overlap, making them seem a little out of order c. boxes are used to represent orbitals

Another way of writing the aufbau principle diagram: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 7s 7p

2. Pauli Exclusion principle – an orbital (box) can hold a maximum of two electrons (arrows) a. for two electrons to fit, they have to have opposite spins for one electron in the orbital for two electrons in the orbital (opposite spins)

3. Hund’s Rule – when electrons occupy degenerate orbitals, one electron is placed into each orbital with parallel spins before doubling up Ex. _____ _____ _____ NOT _____ _____ _____ 3p 3p

Have out periodic tables before starting. At this time show the orbital viewer at http://intro.chem.okstate.edu/WorkshopFolder/Electronconfnew.html Have out periodic tables before starting.

Orbital Notation shows the arrows in the boxes to represent the electrons in an atom. To shorten this process, an electron configuration can be written. It leaves out the information about the number of orbitals in each sublevel, so it will be expect you remember that information.

It has the general form nΔ° n = principal quantum number (1-7…) Δ = sublevel letter (s, p, d, or f) ° = number of e- in that orbital (1-14)

The sublevels can be listed in order of filling as from the periodic table, but for the notes, quizzes, and tests the sublevels will be grouped together by principal quantum number.

Ni = 28 e- 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f

Ni = 28 e- 1s2 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f

Ni = 28 e- 1s2 2s2 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f

Ni = 28 e- 1s2 2s2 2p6 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f

Ni = 28 e- 1s2 2s2 2p6 3s2 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f

Ni = 28 e- 1s2 2s2 2p6 3s2 3p6 3d 4s 4p 4d 4f 5s 5p 5d 5f

Ni = 28 e- 1s2 2s2 2p6 3s2 3p6 3d 4s2 4p 4d 4f 5s 5p 5d 5f

Ni = 28 e- 1s2 2s2 2p6 3s2 3p6 3d8 4s2 4p 4d 4f 5s 5p 5d 5f

Ni = 28 e- 1s2 2s2 2p6 3s2 3p6 3d8 4s2 4p 4d 4f 5s 5p 5d 5f 2 + 2 + 6 + 2 + 6 + 8 + 2 = 28

Sn = 50 e- Your Turn to Try 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f

Sn = 50 e- 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f 5s2 5p2 5d 5f

A few elements have electron configurations that do not follow the normal pattern. These two groups are represented by the first elements in their group: By normal configuration: Cr -- 1s2 2s2 2p6 3s2 3p6 3d4 4s2 … Cu -- 1s2 2s2 2p6 3s2 3p6 3d9 4s2 …

By actual (seen in nature) configuration: Cr -- 1s2 2s2 2p6 3s2 3p6 3d5 4s1 … Cu -- 1s2 2s2 2p6 3s2 3p6 3d10 4s1 …

The other elements in those groups work in similar matters The other elements in those groups work in similar matters. Instead of writing d4, a half filled sublevel seems to be more stable, so make it d5. Instead of writing a d9, a completely filled sublevel seems to be more stable, so make it d10.

If writing out the entire electron configuration is too much, we can use the previous (in the periodic table) noble gas to take the place of part of the electron configuration: Polonium: 1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p4 Xenon: 1s22s22p63s23p64s23d104p65s24d105p6 Polonium: [Xe] 6s24f145d106p4

When the electron configuration is written for an element using the noble gas configuration the electrons written after the noble gas are the ones that appear on the outside of the atom, called valence electrons..

When elements bond to form compounds, it is these electrons that are involved. The amount of valence electrons makes a big difference in how the element will bond, so to make it easy to predict, we draw electron dot diagrams. A) In an electron dot diagram, we use the symbol of the element and dots to represent the number of valence electrons. B) Only s and p electrons with the highest quantum number count for dot diagrams, even if there are d and f electrons after the noble gas.

Lithium = [He] 2s1 So Li

Beryllium = [He] 2s2 So Be

Boron = [He] 2s22p1 So B

Carbon = [He] 2s22p2 So C

Nitrogen = [He] 2s22p3 So N

Oxygen = [He] 2s22p4 So O

Fluorine = [He] 2s22p5 So F

Neon = [He] 2s22p6 or [Ne] So Ne