1 Optimal focusing lattice for XFEL undulators: Numerical simulations Vitali Khachatryan, Artur Tarloyan CANDLE, DESY/MPY 17.12.2007.

Slides:



Advertisements
Similar presentations
Schemes for generation of attosecond pulses in X-ray FELs E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov The potential for the development of XFEL beyond.
Advertisements

Bunch compressor design for eRHIC Yichao Jing and Vladimir Litvinenko FLS2012, Newport News, VA 3/8/2012.
Performance Analysis Using Genesis 1.3 Sven Reiche LCLS Undulator Parameter Workshop Argonne National Laboratory 10/24/03.
Undulator Commissioning September 22, 2004 Heinz-Dieter Nuhn, SLAC / SSRL LCLS Commissioning Workshop Undulator / FEL Commissioning.
X-Ray Diagnostics for the LCLS Jan , 2004 UCLA.
Undulator Gap Increase Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center.
Overview of Proposed Parameter Changes Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator.
Undulator Specifications Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center.
J. Pflüger / DESY - Radiation Damage Workshop Stanford June 19, 2008 Radiation Damage Study at FLASH using the Diagnostic Undulator J. Pflüger, J. Skupin,
LCLS-II Transverse Tolerances Tor Raubenheimer May 29, 2013.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, N.Kazarinov.
FEL simulation code FAST Free-Electron Laser at the TESLA Test Facility Generic name FAST stands for a set of codes for ``full physics'' analysis of FEL.
A. Doyuran, L. DiMauro, W. Graves, R. Heese, E. D. Johnson, S. Krinsky, H. Loos, J.B. Murphy, G. Rakowsky, J. Rose, T. Shaftan, B. Sheehy, Y. Shen, J.
FNAL, May 10, Introduction for Beam Diagnostics Laboratory Main Mission: R&D on charged particle beam diagnostics for e + /e - linear colliders.
Undulator parameters choice/wish based on a simplified XFEL cost model Jürgen Pfingstner 29 st of July 2015.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
B. FaatzS2E workshop, August 18-22, XFEL simulations with GENESIS Outline: Undulator layout (real/simulated) Matching Genesis.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
SFLASH  SASE interference setup & optics rough estimation 1d estimation 3d estimation summary.
Beam Dynamics in MeRHIC Mike Blaskiewicz On behalf of MeRHIC/eRHIC working group.
Optimization of Compact X-ray Free-electron Lasers Sven Reiche May 27 th 2011.
28-May-2008Non-linear Beam Dynamics WS1 On Injection Beam Loss at the SPring-8 Storage Ring Masaru TAKAO & J. Schimizu, K. Soutome, and H. Tanaka JASRI.
1 Alternative Bunch Compressor 30 th Sep KNU Eun-San Kim.
Basic Energy Sciences Advisory Committee MeetingLCLS February 26, 2001 J. Hastings Brookhaven National Laboratory LCLS Scientific Program X-Ray Laser Physics:
Harmonic lasing in the LCLS-II (a work in progress…) G. Marcus, et al. 03/11/2014.
Kiyoshi Kubo Electron beam in undulators of e+ source - Emittance and orbit angle with quad misalignment and corrections - Effect of beam pipe.
NON-WIGGLER-AVERAGED START-TO-END SIMULATIONS OF HIGH-GAIN FREE- ELECTRON LASERS H.P. Freund Science Applications International Corp. McLean, Virginia.
Singel pass FELs for ERL. X-RAY FELS BASED ON ERL FACILITIES A. Meseck, C. Mayes F. Löhl G. Hoffstätter.
The Next Generation Light Source Test Facility at Daresbury Jim Clarke ASTeC, STFC Daresbury Laboratory Ultra Bright Electron Sources Workshop, Daresbury,
Design Considerations of table-top FELs laser-plasma accelerators principal possibility of table-top FELs possible VUV and X-ray scenarios new experimental.
UCLA Claudio Pellegrini UCLA Department of Physics and Astronomy X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/
Transverse Gradient Undulator and its applications to Plasma-Accelerator Based FELs Zhirong Huang (SLAC) Introduction TGU concept, theory, technology Soft.
Awake electron beam requirements ParameterBaseline Phase 2Range to check Beam Energy16 MeV MeV Energy spread (  ) 0.5 %< 0.5 % ? Bunch Length (
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
What did we learn from TTF1 FEL? P. Castro (DESY).
X-band Based FEL proposal
E. Schneidmiller and M. Yurkov FEL Seminar, DESY April 26, 2016 Reverse undulator tapering for polarization control at X-ray FELs.
WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN Enhanced X-ray FEL performance from tilted electron beams Eduard Prat, Simona Bettoni and Sven Reiche :: Paul Scherrer.
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
Some Simulations for the Proposed Hard X-Ray Self- Seeding on LCLS J. Wu J. Wu et al. Feb. 25, 2011.
SIMULATION FOR TW LCLS-II Tor’s question on the undulator length in the TW FEL senario SASE FEL undulator length 9, 10, and 11:  9 – m, 10.
Eduard Prat / Sven Reiche :: Paul Scherrer Institute
Positron production rate vs incident electron beam energy for a tungsten target
Status of SPARC Undulator
Beam-beam effects in eRHIC and MeRHIC
Paul Scherrer Institut
Yuhui Li How to edit the title slide
Review of Application to SASE-FELs
Free Electron Lasers (FEL’s)
F. Villa Laboratori Nazionali di Frascati - LNF On behalf of Sparc_lab
Progress activities in short bunch compressors
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
Laser assisted emittance exchange to reduce the X-ray FEL size
Z. Huang LCLS Lehman Review May 14, 2009
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
XFEL Simulations with SIMPLEX and GENESIS (Some preliminary results)
Status of FEL Physics Research Worldwide  Claudio Pellegrini, UCLA April 23, 2002 Review of Basic FEL physical properties and definition of important.
Laser Heater Integration into XFEL. Update.
Gain Computation Sven Reiche, UCLA April 24, 2002
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Achieving Required Peak Spectral Brightness Relative Performance for Four Undulator Technologies Neil Thompson WP5 – 20/03/19.
Undulator Physics Diagnostics / Commissioning Strategy Heinz-Dieter Nuhn, SLAC / SSRL August 11, 2004 Undulator Overview FEL Parameters Diagnostics and.
Review of the European XFEL Bunch Compression System: Introduction and Concept Torsten Limberg.
Vitali Khachatryan, Arthur Tarloyan, Vahe Sahakyan, V. Tsakanov
XFEL Beam Dynamics Activity at CANDLE
BEAM REALISTIC ERROR ORBIT IMPACT ON SASE PERFORMANCE
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
S2E Meeting on Yauhen Kot.
3.2 km FODO lattice for 10 Hz operation (DMC4)
Presentation transcript:

1 Optimal focusing lattice for XFEL undulators: Numerical simulations Vitali Khachatryan, Artur Tarloyan CANDLE, DESY/MPY

2 Electron energy [GeV]17.5 Emittance [mm-mrad]1.4 Bunch length (RMS) [micron]25 Bunch charge [nC]1 Peak current [kA]5 Energy spread [MeV]1.5 Table 1. Electron beam parameters at the entrance of the SASE1 and SASE2 undulators Table 2. European XFEL SASE1 FEL design parameters Resonant radiation wavelength [nm]0.1 K value3.3 Period length [cm]3.56 Segment length [m]5 Number of segments33 Segment interval [m]6.1 Total length [m]201.3 Lattice typeFODO Table 3. European XFEL SASE2 FEL design parameters Resonant radiation wavelength [nm] K value Period length [cm]4.8 Segment length [m]55 Number of segments42 Total length [m]256.2 Lattice typeFODO

3

4

5 Estimation of the FEL brightness from using GENESIS time –dependent simulations Sat. length is calculated as weighted average over the bunch. The maximum power, rad. size, rad. divergence are calculated similarly at L Sat distance.

6 FEL peak Brightness/Brilliance in the units of (Photons/sec/ mm 2 /mrad 2 /0.1%bw) is calculated as: Saturation length distribution along the bunch for SASE2 undulator tuned to wavelength 0.4nm; Average beta function is 15m.

7 Saturation power distribution along the bunch for SASE2 undulator tuned to wavelength 0.4nm; Average beta function is 15m.

8 Power distribution along the sat =120m for SASE2 undulator tuned to wavelength 0.4nm; Average beta function is 15m.

9 Radiation size distribution along the sat =120m for SASE2 undulator tuned to wavelength 0.4nm; Average beta function is 15m.

10 Radiation divergence angle distribution along the sat =120m for SASE2 undulator tuned to wavelength 0.4nm; Average beta function is 15m.

11 Radiation spectrum for SASE2 undulator tuned to wavelength 0.4nm; Average beta function is 15m. Bunch current longitudinal profile

12 Saturation length dependence on the average beta function for the SASE2 undulator tuned to wavelength 0.1nm; Current design value for the av. beta is 46m. Dependence of the brilliance/brightness on the average beta function for the SASE2 undulator tuned to wavelength 0.1nm; Current design value for the av. beta is 46m.

13 SASE2 undulator radiation parameters (maximum power, radiation size and divergence, badwidth and brightness/brilliance) dependence on the average beta function. All parameters are normalized to those corresponding to lattice current design parameters: 12.2 FODO period length and 46m average beta function.

14 Saturation length dependence on the average beta function for the SASE2 undulator tuned to wavelength 0.1nm; FODO period length is 24.4m Current design value for the the period length is 12.2m. Dependence of the brilliance/brightness on the average beta function for the SASE2 undulator tuned to wavelength 0.1nm; FODO period length is 24.4m Current design value for the of the period length is 12.2m.

15 SASE2 undulator radiation parameters (maximum power, radiation size and divergence, badwidth and brightness/brilliance) dependence on the average beta function. All parameters are normalized to those corresponding to the lattice current design parameters: 12.2m FODO period length and 46m average beta function.

16 Mu/degMu/radB_24.4B_12.2B_36.6B_

17 Saturation length dependence on the average beta function for the SASE2 undulator tuned to wavelength 0.4nm; Current design value for the av. beta is 15m. Dependence of the brilliance/brightness on the average beta function for the SASE2 undulator tuned to wavelength 0.4nm; Current design value for the av. beta is 15m.

18 SASE2 undulator radiation parameters (maximum power, radiation size and divergence, bandwidth and brightness/brilliance) dependence on the average beta function. All parameters are normalized to those corresponding to the lattice current design parameters: 12.2m FODO period length and 15m average beta function.

19 Saturation length dependence on the average beta function for the SASE2 undulator tuned to wavelength 0.4nm; FODO period length is 24.4m Current design value for the the period length is 12.2m. Dependence of the brilliance/brightness on the average beta function for the SASE2 undulator tuned to wavelength 0.4nm; FODO period length is 24.4m Current design value for the of the period length is 12.2m.

20 SASE2 undulator radiation parameters (maximum power, radiation size and divergence, badwidth and brightness/brilliance) dependence on the average beta function. All parameters are normalized to those corresponding to the lattice current design parameters: 12.2m FODO period length and 15m average beta function.

21

22

23 Conclusions In terms of saturation length minimization for SASE2 undulator tuned to 0.1nm wavelength for the 12.2m FODO period 35m av. beta function is preferable over current design value of 46m. For the SASE2 undulator tuned to 0.1nm wavelength for the 12.2m FODO period brightness increases with the increase of av. beta function. For the same phase advance per cell the increase of the FODO period to 24.4m improves brightness of the SASE2 FEL tuned to 0.1nm by about factor 2. For the SASE2 FEL operating with 0.4nm wavelength design values and lattice period length 12.2m, the average beta function 15m is optimal. For the SASE2 FEL operating with 0.4nm wavelength for 24.4m of lattice period length compared with those of 12.2m period length saturation length increases and brilliance decreases(~10-15%). A reduction of the number of quadrupole magnets brings significant benefits: Saves the costs of eliminated magnets; Mitigates the difficulties associated with magnet misalignment and construction errors; Saves place between undulator segments, providing more room for phase shifters and diagnostic equipment; Gives possibility of shortening the gap between the segments and thus increasing the undulator “filling factor”.