Mathematical Induction II Lecture 14: Nov 14 1234 5678 9101112 131415 1234 5678 9101112 131514.

Slides:



Advertisements
Similar presentations
Copyright © Cengage Learning. All rights reserved. CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION.
Advertisements

Induction and Recursion. Odd Powers Are Odd Fact: If m is odd and n is odd, then nm is odd. Proposition: for an odd number m, m k is odd for all non-negative.
Induction Lecture 5: Sep 21 (chapter of the book and chapter of the notes)
1 Mathematical Induction. 2 Mathematical Induction: Example  Show that any postage of ≥ 8¢ can be obtained using 3¢ and 5¢ stamps.  First check for.
Induction and recursion
Elementary Number Theory and Methods of Proof. Basic Definitions An integer n is an even number if there exists an integer k such that n = 2k. An integer.
1 Mathematical Induction. 2 Mathematical Induction: Example  Show that any postage of ≥ 8¢ can be obtained using 3¢ and 5¢ stamps.  First check for.
CSE115/ENGR160 Discrete Mathematics 03/22/12 Ming-Hsuan Yang UC Merced 1.
Invariant Method Lecture 6: Sep
Strong Induction, WOP and Invariant Method Leo Cheung.
1 Section 3.3 Mathematical Induction. 2 Technique used extensively to prove results about large variety of discrete objects Can only be used to prove.
Methods of Proof Lecture 4: Sep 16 (chapter 3 of the book)
Invariant Method Lecture
Prove the Impossible Lecture 6: Sep 19 (based on slides in MIT 6.042)
1 Mathematical Induction. 2 Mathematical Induction: Example  Show that any postage of ≥ 8¢ can be obtained using 3¢ and 5¢ stamps.  First check for.
Induction (chapter of the book and chapter of the notes)
Induction and recursion
Methods of Proof & Proof Strategies
Mathematical Maxims and Minims, 1988
Invariant Method
Induction and recursion
Reading and Writing Mathematical Proofs
Mathematical Induction. F(1) = 1; F(n+1) = F(n) + (2n+1) for n≥ F(n) n F(n) =n 2 for all n ≥ 1 Prove it!
1 Introduction to Abstract Mathematics Chapter 4: Sequences and Mathematical Induction Instructor: Hayk Melikya 4.1- Sequences. 4.2,
Methods of Proof. This Lecture Now we have learnt the basics in logic. We are going to apply the logical rules in proving mathematical theorems. Direct.
Section 1.8. Section Summary Proof by Cases Existence Proofs Constructive Nonconstructive Disproof by Counterexample Nonexistence Proofs Uniqueness Proofs.
1 Introduction to Abstract Mathematics Chapter 3: Elementary Number Theory and Methods of Proofs Instructor: Hayk Melikya Direct.
Discrete Mathematics Tutorial 11 Chin
Methods of Proof Lecture 3: Sep 9. This Lecture Now we have learnt the basics in logic. We are going to apply the logical rules in proving mathematical.
Mathematical Induction I Lecture 4: Sep 16. This Lecture Last time we have discussed different proof techniques. This time we will focus on probably the.
Copyright © Zeph Grunschlag, Induction Zeph Grunschlag.
Chinese Remainder Theorem Dec 29 Picture from ………………………
Section 3.3: Mathematical Induction Mathematical induction is a proof technique that can be used to prove theorems of the form:  n  Z +,P(n) We have.
Discrete Structures & Algorithms More on Methods of Proof / Mathematical Induction EECE 320 — UBC.
ICS 253: Discrete Structures I Induction and Recursion King Fahd University of Petroleum & Minerals Information & Computer Science Department.
Based on Rosen, Discrete Mathematics & Its Applications, 5e Prepared by (c) Michael P. Frank Modified by (c) Haluk Bingöl 1/18 Module.
CompSci 102 Discrete Math for Computer Science March 1, 2012 Prof. Rodger Slides modified from Rosen.
Induction & Recursion Weiss: ch 7.1. Recursion –a programming strategy for solving large problems –Think “divide and conquer” –Solve large problem by.
CS 103 Discrete Structures Lecture 13 Induction and Recursion (1)
1 INFO 2950 Prof. Carla Gomes Module Induction Rosen, Chapter 4.
1 Mathematical Induction CS 202 Epp, chapter 4. 2.
Mathematical Induction Section 5.1. Climbing an Infinite Ladder Suppose we have an infinite ladder: 1.We can reach the first rung of the ladder. 2.If.
Mathematical Induction
Copyright © Zeph Grunschlag, Induction Zeph Grunschlag.
CompSci 102 Discrete Math for Computer Science March 13, 2012 Prof. Rodger Slides modified from Rosen.
Chapter 5. Section 5.1 Climbing an Infinite Ladder Suppose we have an infinite ladder: 1.We can reach the first rung of the ladder. 2.If we can reach.
Mathematical Induction I Lecture 5: Sep 20 (chapter of the textbook and chapter of the course notes)
Section 1.7. Definitions A theorem is a statement that can be shown to be true using: definitions other theorems axioms (statements which are given as.
Methods of Proof Lecture 4: Sep 20 (chapter 3 of the book, except 3.5 and 3.8)
3.3 Mathematical Induction 1 Follow me for a walk through...
Chapter 5 1. Chapter Summary  Mathematical Induction  Strong Induction  Recursive Definitions  Structural Induction  Recursive Algorithms.
Induction (chapter of the book and chapter of the notes)
Hubert Chan (Chapters 1.6, 1.7, 4.1)
The Foundations: Logic and Proofs
Advanced Algorithms Analysis and Design
Mathematical Induction II
Chapter 3 The Real Numbers.
Induction and recursion
Predicate Calculus Validity
Hubert Chan (Chapters 1.6, 1.7, 4.1)
Gray Code Can you find an ordering of all the n-bit strings in such a way that two consecutive n-bit strings differed by only one bit? This is called the.
Chapter 5 Induction and Recursion
Discrete Mathematics and its Applications
Induction and recursion
Methods of Proof Rosen 1.7, 1.8 Lecture 4: Sept 24, 25.
Induction Chapter
Advanced Analysis of Algorithms
Induction Rosen 5 Lecture 8: Oct 29, 30.
Agenda Proofs (Konsep Pembuktian) Direct Proofs & Counterexamples
Methods of Proof Rosen 1.7, 1.8 Lecture 4: Sept, 2019.
Presentation transcript:

Mathematical Induction II Lecture 14: Nov

This Lecture We will continue our discussions on mathematical induction. The new elements in this lecture are some variants of induction: Strong induction Well Ordering Principle Invariant Method

Start: a stack of boxes Move: split any stack into two stacks of sizes a,b>0 Scoring: ab points Keep moving: until stuck Overall score: sum of move scores ab a+ba+b Unstacking Game

n-11n What is the best way to play this game? Suppose there are n boxes. What is the score if we just take the box one at a time?

Not better than the first strategy! Unstacking Game nn 2n What is the best way to play this game? Suppose there are n boxes. What is the score if we cut the stack into half each time? Say n=8, then the score is 1x4x4 + 2x2x2 + 4x1 = 28 first round secondthird Say n=16, then the score is 8x8 + 2x28 = 120

Unstacking Game Claim: Every way of unstacking gives the same score. Claim: Starting with size n stack, final score will be Proof: by Induction with Claim(n) as hypothesis Claim(0) is okay. score = 0 Base case n = 0:

Unstacking Game Inductive step. assume for n-stack, and then prove C(n+1): (n+1)-stack score = Case n+1 = 1. verify for 1-stack: score = 0 C(1) is okay.

Unstacking Game Case n+1 > 1. So split into an a-stack and b-stack, where a + b = n +1. (a + b)-stack score = ab + a-stack score + b-stack score by induction: a-stack score = b-stack score =

We’re done!so C(n+1) is okay. Unstacking Game (a + b)-stack score = ab + a-stack score + b-stack score

Induction Hypothesis Wait: we assumed C(a) and C(b) where 1  a, b  n. But by induction can only assume C(n) the fix: revise the induction hypothesis to Proof goes through fine using Q(n) instead of C(n). So it’s OK to assume C(m) for all m  n to prove C(n+1). In words, it says that we assume the claim is true for all numbers up to n.

Prove P(0). Then prove P(n+1) assuming all of P(0), P(1), …, P(n) (instead of just P(n)). Conclude  n.P(n) Strong Induction 0  1, 1  2, 2  3, …, n-1  n. So by the time we got to n+1, already know all of P(0), P(1), …, P(n) Strong induction Ordinary induction equivalent The point is: assuming P(0), P(1), up to P(n), it is often easier to prove P(n+1).

Divisibility by a Prime Theorem. Any integer n > 1 is divisible by a prime number. Idea of induction. Let n be an integer. If n is a prime number, then we are done. Otherwise, n = ab, both are smaller than n. If a or b is a prime number, then we are done. Otherwise, a = cd, both are smaller than a. If c or d is a prime number, then we are done. Otherwise, repeat this argument, since the numbers are getting smaller and smaller, this will eventually stop and we have found a prime factor of n. Remember this slide? Now we can prove it by strong induction very easily. In fact we can prove a stronger theorem very easily.

Theorem: Every integer > 1 is a product of primes. Prime Products Proof: (by strong induction) Base case is easy. Suppose the claim is true for all 2 <= i < n. Consider an integer n. If n is prime, then we are done. So n = k·m for integers k, m where n > k,m >1. Since k,m smaller than n, By the induction hypothesis, both k and m are product of primes k = p 1  p 2    p 94 m = q 1  q 2    q 214 Theorem. Any integer n > 1 is divisible by a prime number.

Prime Products …So n = k  m = p 1  p 2    p 94  q 1  q 2    q 214 is a prime product.  This completes the proof of the induction step. Theorem: Every integer > 1 is a product of primes.

Available stamps: 5¢5¢3¢3¢ Theorem: Can form any amount  8¢ Prove by strong induction on n. P(n) ::= can form n¢. Postage by Strong Induction What amount can you form?

Postage by Strong Induction Base case (n = 8): 8¢: Inductive Step: assume m¢ for 8  m < n, then prove n¢ cases: n=9: n=10:

case n  11: let m =n  3. now n  m  8, so by induction hypothesis have: n 3n 3 = n + 3 Postage by Strong Induction We’re done! In fact, use at most two 5-cent stamps!

Postage by Strong Induction Given an unlimited supply of 5 cent and 7 cent stamps, what postages are possible? Theorem: For all n >= 24, it is possible to produce n cents of postage from 5¢ and 7¢ stamps.

This Lecture Strong induction Well Ordering Principle Invariant Method

Every nonempty set ofnonnegative integers has a least element. Well Ordering Principle Every nonempty set of nonnegative rationals has a least element. NO! Every nonempty set of nonnegative integers has a least element. NO! Axiom This is an axiom equivalent to the principle of mathematical induction. Note that some similar looking statements are not true:

Proof: suppose Thm: is irrational …can always find such m, n without common factors… why always? Well Ordering Principle By WOP,  minimum |m| s.t. so where |m 0 | is minimum.

but if m 0, n 0 had common factor c > 1, then and contradicting minimality of |m 0 | Well Ordering Principle The well ordering principle is usually used in “proof by contradiction”. Assume the statement is not true, so there is a counterexample. Choose the “smallest” counterexample, and find a even smaller counterexample. Conclude that a counterexample does not exist.

To prove ``  n  N. P(n)’’ using WOP: 1.Define the set of counterexamples C ::= {n  N | ¬P(n)} 2.Assume C is not empty. 3.By WOP, have minimum element m 0  C. 4.Reach a contradiction (somehow) – usually by finding a member of C that is < m 0. 5.Conclude no counterexamples exist. QED Well Ordering Principle in Proofs

Non-Fermat Theorem It is difficult to prove there is no positive integer solutions for But it is easy to prove there is no positive integer solutions for Hint: Prove by contradiction using well ordering principle… Fermat’s theorem Non-Fermat’s theorem

Suppose, by contradiction, there are integer solutions to this equation. By the well ordering principle, there is a solution with |a| smallest. In this solution, a,b,c do not have a common factor. Otherwise, if a=a’k, b=b’k, c=c’k, then a’,b’,c’ is another solution with |a’| < |a|, contradicting the choice of a,b,c. (*) There is a solution in which a,b,c do not have a common factor. Non-Fermat Theorem

On the other hand, we prove that every solution must have a,b,c even. This will contradict (*), and complete the proof. First, since c 3 is even, c must be even. Let c = 2c’, then (because odd power is odd). Non-Fermat Theorem

Since b 3 is even, b must be even. (because odd power is odd). Let b = 2b’, then Since a 3 is even, a must be even. (because odd power is odd). There a,b,c are all even, contradicting (*) Non-Fermat Theorem

This Lecture Strong induction Well Ordering Principle Invariant Method

A Chessboard Problem ? A rook can only move along a diagonal Can a rook move from its current position to the question mark?

? A rook can only move along a diagonal Can a rook move from its current position to the question mark? Impossible! Why? A Chessboard Problem

? 1.The rook is in a red position. 2.A red position can only move to a red position by diagonal moves. 3.The question mark is in a white position. 4.So it is impossible for the rook to go there. Invariant! This is a simple example of the invariant method. A Chessboard Problem

Domino Puzzle An 8x8 chessboard, 32 pieces of dominos Can we fill the chessboard?

Domino Puzzle An 8x8 chessboard, 32 pieces of dominos Easy!

Domino Puzzle An 8x8 chessboard with two holes, 31 pieces of dominos Can we fill the chessboard? Easy??

Domino Puzzle An 4x4 chessboard with two holes, 7 pieces of dominos Can we fill the chessboard? Impossible!

Domino Puzzle An 8x8 chessboard with two holes, 31 pieces of dominos Can we fill the chessboard? Then what??

Domino Puzzle An 8x8 chessboard with two holes, 31 pieces of dominos Can we fill the chessboard?

Domino Puzzle 1.Each domino will occupy one white square and one red square. 2.There are 32 blue squares but only 30 white squares. 3.So it is impossible to fill the chessboard using only 31 dominos. Invariant! This is another example of the invariant method.

Invariant Method 1.Find properties (the invariants) that are satisfied throughout the whole process (by induction). 2.Show that the target do not satisfy the properties. 3.Conclude that the target is not achievable. In the rook example, the invariant is the colour of the position of the rook. In the domino example, the invariant is that any placement of dominos will occupy the same number of red positions and white positions. Very useful in analysis of algorithms.

Challenge (Optional) Show that we can not move from the left state to the right state. See the answer in L6 in 2009.

Quick Summary Induction is perhaps the most important proof technique in computer science. For example it is very important in proving the correctness of an algorithm (by invariant method) and also analyzing the running time of an algorithm. There is no particular example that you should remember. The point here is to understand the principle of mathematical induction (the way that you “reduce” a large problem to smaller problems), and apply it to the new problems that you will encounter in future! Possibly the only way to learn this is to do more exercises!