Problem 9 ρ 1 ~112 Ωm Z 1 ~ 2m ρ 2 ~ 11.2 Ωm. Real data, Hyde Park Could interpret as 2 or 3 layers. 2 layers – top 140 ± 15 Ωm bottom ~10 ± 2 Ωm (blue.

Slides:



Advertisements
Similar presentations
Problem 1 The corrections can be larger than the anomaly Stat.Time T Dist. (m) Elev. (m) Reading (dial units) Base reading at time T Drift corr’d anom.
Advertisements

Tom Wilson, Department of Geology and Geography Environmental and Exploration Geophysics I tom.h.wilson Department of Geology and.
Scientists divide the Earth
European Repeat Station Workshop Bucharest May 2007 UK repeat station programme Tom Shanahan and Susan Macmillan.
Magnetic Methods (IV) Environmental and Exploration Geophysics I
Geomagnetism The Earth’s Magnetic field. Magnetization of rocks
Geomagnetism (I).
Magnetic Field 5.
Magnetic fields.
Measuring the Earths Dimensions
Topic 2 A look at the Earth’s shape, coordinate systems, topographic maps, and data field analysis.
Models of the Earth.
Processing and interpreting total field magnetic data, Kevin Rim, Montana Collected three adjacent grids Grid #1 used for organization- fill in details.
Where do those plate reconstructions through time come from?
Gravity: Gravity anomalies. Earth gravitational field. Isostasy. Moment density dipole. Practical issues.
GG 450 Magnetism February 7, QUIZ Like gravity, magnetic fields are POTENTIAL fields, and we expect that we will be able to trade vectors for scalars.
Geomagnetic field Inclination
GG 450 Feb 21, 2008 Magnetic Interpretation. Homework return.
Outline  Uses of Gravity and Magnetic exploration  Concept of Potential Field  Conservative  Curl-free (irrotational)  Key equations and theorems.
Section 17.2 – Seafloor Spreading
Essential Questions What evidence led to the discovery of seafloor spreading? What is the significance of magnetic patterns on the seafloor? How is the.
17-2 Seafloor Spreading Objectives
Leading Cadet Training
INTRODUCTION TO UTM COORDINATES AND MAP DATUMS.
Gravity I: Gravity anomalies. Earth gravitational field. Isostasy.
Tom Wilson, Department of Geology and Geography Environmental and Exploration Geophysics I tom.h.wilson Department of Geology and.
Latitude-Longitude System –
Chapter 3 Section 1- Finding Locations on Earth
Environmental and Exploration Geophysics I tom.h.wilson Department of Geology and Geography West Virginia University Morgantown, WV.
Gravity Methods Gravity is not a “constant” 9.78 m/s 2 Responds to local changes in rock density Widely used in oil and gas, mineral exploration, engineering.
The Earth © Lisa Michalek.
Geomagnetism: Lecture 1 This lecture is based largely on:
Magnetic field methods As for gravity methods, magnetic field is natural, responds to the presence of variable rock types Gravity responds to density,
Tom Wilson, Department of Geology and Geography Environmental and Exploration Geophysics I tom.h.wilson Department of Geology and.
Environmental and Exploration Geophysics I tom.h.wilson Department of Geology and Geography West Virginia University Morgantown, WV.
Air Pressure and Winds. Atmospheric Pressure  What causes air pressure to change in the horizontal?  Why does the air pressure change at the surface?
Models of the Earth Chapter 3. Ch03\80017.html.
Geomagnetism: Lecture 1 This lecture is based largely on:
Last Time: Magnetic Methods (Intro) Governed by Laplace’ eqn :  2 u = f (sources) Differs from gravity in that the source is a dipole rather than a monopole.
Tom Wilson, Department of Geology and Geography Environmental and Exploration Geophysics I tom.h.wilson Department of Geology and.
Geology 5660/6660 Applied Geophysics 28 Mar 2014 © A.R. Lowry 2014 For Mon 31 Mar: Burger (§7.4–7.6) Last Time: Earth’s Main Magnetic Field Earth’s.
Last Time: Gravity Modeling Gravitational attraction of an arbitrary body: Gravity anomaly due to a sphere: (represents only the vertical component of.
Tom Wilson, Department of Geology and Geography Environmental and Exploration Geophysics I tom.h.wilson Department of Geology and.
Tom Wilson, Department of Geology and Geography Environmental and Exploration Geophysics I tom.h.wilson Department of Geology and.
Magnetic Field 3. Earth’s magnetic field Intensity (30,000 nT – equator to 60,000 nT – poles) Inclination (0  -equator to 90  -poles) Declination (most.
Environmental and Exploration Geophysics I tom.h.wilson Department of Geology and Geography West Virginia University Morgantown,
The crust and the Earth’s interior
Measuring the Gravity and Magnetic Anomaly of a Rising Lava Plume Chris Jaeger December 3, 2015.
Unit 2 Measuring the Earth Mapping. Size and Shape Almost a perfect sphere- slight flattening in the polar regions and a slight bulging at the equatorial.
Tom Wilson, Department of Geology and Geography Environmental and Exploration Geophysics I tom.h.wilson Department of Geology and.
The Earth’s Magnetic Field
Tom Wilson, Department of Geology and Geography Environmental and Exploration Geophysics I tom.h.wilson Department of Geology and.
Geology 5660/6660 Applied Geophysics 1 Apr 2016 © A.R. Lowry 2016 For Mon 4 Apr: Burger (§ ) Last Time: Magnetics (Measurement, Anomalies)
Tom Wilson, Department of Geology and Geography Environmental and Exploration Geophysics I tom.h.wilson Department of Geology and.
Environmental and Exploration Geophysics I tom.h.wilson Department of Geology and Geography West Virginia University Morgantown, WV.
Geology 5660/6660 Applied Geophysics 30 Mar 2016
Last Time: Magnetic Methods Intensity of induced magnetization by an external field is (where k is magnetic susceptibility ) Crustal minerals can be diamagnetic.
EXPLORING EARTH’S INTERIOR
Section 2: Seafloor Spreading
What is the magnetic potential of a dipole?
Magnetic method Magnetic force and field strength for pole strength m’ and m.
LITHOSPHERE : MAGNETIC FIELD AND GRAVITY FIELD IN EARTH
F4 KI 2 d and e …. earth’s magnetic field ……
Final review sessions - II
Gravity and Magnetic Surveying
GG 450 February 19, 2008 Magnetic Anomalies.
Section 2: Seafloor Spreading
Magnets and Magnetic Fields
What causes the plates to move
Presentation transcript:

Problem 9 ρ 1 ~112 Ωm Z 1 ~ 2m ρ 2 ~ 11.2 Ωm

Real data, Hyde Park Could interpret as 2 or 3 layers. 2 layers – top 140 ± 15 Ωm bottom ~10 ± 2 Ωm (blue line) 3 layers – top 125 ± 15 Ωm, middle 150 ± 15 Ωm, bottom ~10 ± 2 Ωm (yellow line) Calculate misfit --- normalized (observed-expected) 2 Iterate to minimize misfit

Lecture 6 Magnetic data Theory Data collection Interpretation Applications Problems 10 and 11

Magnetic anomalies Detect changes in Earth’s field Signal from near-surface magnetic rocks

Rock typeClassificationSusceptibility (SI) GraniteIgneous BasaltIgneous AndesiteIgneous MetasedimentMetamorphic GranuliteMetamorphic Shale/sandstoneSedimentary MineralCompositionSusceptibility (SI) MagnetiteFe 3 O PyrrhotiteFe 7 S HematiteFe 2 O Induced magnetic field = susceptibilty x Earth’s field J i = k x H Induced field is in same direction as Earth’s field. Both H and J i are vectors The measured magnetic field = Earth’s field + Induced field B = J i + H (This is a vector addition)

Units -- cgs, SI, mks Henry’s, nanoTeslas (nT), Gammas (γ), Gauss, Oersted, Webers … In this lecture: Magnetic field strength/intensity: nT (J, B, H) Susceptibility: SI (dimensionless) (k) 1 nT = 1 γ = oersteds

Inclination and strength of Earth field (H) Arrows are vectors At poles, magnetic field strength ~65,000 nT At equator, magnetic field strength ~35,000 nT Induced field will be greatest at poles and least at equator [ J i = kH ] The majority of the field (90%) can be described in terms of a magnetic dipole placed at the centre of the Earth.

Field strength (H) varies significantly with latitude, and less so with longitude The reference field IGRF

Some definitions Inclination is the angle between the Earths field and the horizontal Declination is the angle between magnetic north and true north. [Not same H]

Due to changes in convection within the outer core, the Earth’s field changes slowly with time (Secular variation) The position of the magnetic pole changes and occasionally the north and south pole reverse There is also a daily change in the Earth’s field due to the solar winds and the rotation of the earth (Diurnal variation)

Diurnal variations – largest at midday Magnetic storm – changes very rapid Diurnal variation nT Magnetic storm ± 100 – 200 nT

Magnetic anomaly = observed – expected magnetic field Magnetic anomaly = B – H Hence anomaly should be a direct measure of J i – the induced field Expected field is likely to be value at a base station that is some distance away from the magnetic body of interest, or could be the IGRF reference value for H

There may also be a remanent magnetic field J rem, in which case the anomaly is the vector addition of J i and J rem Usually J i >> J rem If anomaly is small then it is important to make diurnal corrections Return regularly to base and the expected magnetic field is the field at the base station at the same time as the reading at the survey point [similar to drift correction in gravity)

Magnetic surveys – sea, land, air Accuracy ~1-2 nT Measured anomalies are a few – to thousands nT

Most common hand-held field equipment is the proton magnetometer Pass ac current in a coil that is surrounded by a proton-rich fluid Protons are magnetised and align in the direction of the coil axis When the current is turned off the protons “precess” and align themselves with the Earth’s field. The speed of precession is a direct measure of B (the total field J i + H).

Airborne magnetic surveys, parallel, equally spaced flight lines. Normally oriented E-W and N-S, but may be oriented perpendicular to geologic strike direction. Survey typeLine spacingFlight heightArea covered Reconnaissance 1-2 km m Large >10 4 km 2 Detailed m m Small <10 3 km 2 Survey points can be spaced close together or 100’s metres apart Depends on target Very quick Pretty cheap Uninvasive Excellent reconnaissance technique

Total magnetic field over the same area of the Canadian shield, near La Ronge, Saskatchewan at different flight path spacings Clear improvement as line spacing decreases

Interpretation magnetic anomalies Much less straightforward than gravity The shape of the anomaly across a magnetic body varies with: latitude the shape of the body the magnetic properties of the body the direction of the survey the depth of the body any remanent magnetic field in the body Several parameters can vary – need other constraints to come up with a good model of the subsurface

Variation with latitude south-north profile across magnetic body at 60 deg south If J i is in the same direction as the Earth’s field the anomaly is positive

Variation with profile direction, body orientation and inclination Note the change in shape of the anomaly with change in profile direction and different inclinations. There can be quite large magnetic anomalies at the edge of magnetic bodies. Away from the poles, likely to have positive and negative anomaly values

Change of anomaly with survey height (or increasing depth of burial) As flight path height increases, anomaly appears broader and the max/min heights decrease. Exactly the same would happen for an increasing depth of burial of the magnetic bodies. In each case, the bodies will become undetectable at some point.

As seen in the last slide, the width of the anomaly increases with depth of burial, and the height of the anomaly decreases. Thus can use magnetic data to estimate depth of burial of target body Theoretical curves can help us estimate the magnetic properties of the rocks and the depth of burial of the magnetic body In this case: Width of anomaly depends on z Height of anomaly depends on z and m

Removal of the regional gradient As in gravity data, there might be more than one component giving rise to the magnetic anomaly Can filter the data to remove the regional gradient

Applications

Aeromagnetic data, USA In terms of total in km 2, there is more magnetic survey data than any other geophysical data Colour = Geology Contours = magnetic anomaly

The Geology is displaced on the aeromagnetic surface (USA) Sharp spikes = volcanic intrusives 3D visualization Magnetic anomaly can be a good indicator of rock type

Magnetic field can mirror depth to basement. Used by oil industry to assess sediment thickness and “likelyhood” of oil being recovered. Used in the discovery of the Bass basin gas deposits between Australia and Tazmania Use magnetic data to interpret depth to top subducting slab, Japan Magnetic anomaly Gravity anomaly Oil prospecting – offshore Morocco and Gulf of Mexico

Reconnaissance for minerals is probably the widest use Example, iron ore body (haematite) in Australia (solid black) Magnetic anomaly offset from body – high concentration magnetite not coincident with the haematite

0 800 m Archeaological investigations The example above shows a Fenland topsoil magnetic susceptibility map which revealed the location of a medieval kiln. The strong linear feature represents the course of a medieval ditch which contains magnetically enhanced deposits derived from the brickworks.

: A Neolithic and later hill top enclosure Neolithic enclosure, ditches have small magnetic anomaly 0 – 5 nT

Geothermal applications Used magnetic data from Yellowstone Park to estimate depth to magnetized crust. Interpreted as Curie point isotherm They discovered a strong concentration between a shallow depths of the Curie point isotherms and hydrothermal activity

Next week Lecture 7 GPR The Exam Set exercises