Ground-based Lidar Network to Provide Ozone and Aerosol Data for Air-quality Study and GEO-CAP mission AQRS, Nov. 17, 2011 Mike Newchurch 1, Shi Kuang.

Slides:



Advertisements
Similar presentations
ESTO Advanced Component Technology 11/17/03 Laser Sounder for Remotely Measuring Atmospheric CO 2 Concentrations GSFC CO 2 Science and Sounder.
Advertisements

Tropospheric Ozone Lidar Network (TOLNet)- Long-term Tropospheric Ozone Profiling for Satellites, Modeling, and Chemistry Studies NDACC Lidar Working Group.
CO budget and variability over the U.S. using the WRF-Chem regional model Anne Boynard, Gabriele Pfister, David Edwards National Center for Atmospheric.
Diurnal Variability of Aerosols Observed by Ground-based Networks Qian Tan (USRA), Mian Chin (GSFC), Jack Summers (EPA), Tom Eck (GSFC), Hongbin Yu (UMD),
2010/04/27 data 1. 2 MPR data, Courtesy of Dr. Kevin Knupp.
15% 1. ABSTRACT We show results from joint TES-OMI retrievals for May, We combine TES and OMI data by linear updates from the spectral residuals.
Variability in Ozone Profiles at TexAQS within the Context of an US Ozone Climatology Mohammed Ayoub 1, Mike Newchurch 1 2, Brian Vasel 3 Bryan Johnson.
Validation of Tropospheric Emission Spectrometer (TES) nadir stare ozone profiles using ozonesonde measurements during Arctic Research on the Composition.
CO 2 in the middle troposphere Chang-Yu Ting 1, Mao-Chang Liang 1, Xun Jiang 2, and Yuk L. Yung 3 ¤ Abstract Measurements of CO 2 in the middle troposphere.
NDACC Working Group on Water Vapor NDACC Working Group on Water Vapor Bern, July 5 -7, 2006 Raman Lidar activities at Rome - Tor Vergata F.Congeduti, F.Cardillo,
Atmospheric structure from lidar and radar Jens Bösenberg 1.Motivation 2.Layer structure 3.Water vapour profiling 4.Turbulence structure 5.Cloud profiling.
Atmospheric Measurements at Capel Dewi field station Prof. Geraint Vaughan.
Objective: Work with the WRAP, CenSARA, CDPHE, BLM and EPA Region 8 to use satellite data to evaluate the Oil and Gas (O&G) modeled NOx emission inventories.
Tropospheric Ozone Lidar Network (TOLNet) – Long-term Tropospheric Ozone and Aerosol Profiling for Satellite Continuity and Process Studies Mike Newchurch.
Assimilation of EOS-Aura Data in GEOS-5: Evaluation of ozone in the Upper Troposphere - Lower Stratosphere K. Wargan, S. Pawson, M. Olsen, J. Witte, A.
2 nd GEO-CAPE Community Workshop Boulder, CO May 11-13, 2011 Spatio-temporal Variability of Ozone Laminae Michael J. Newchurch 1, Guanyu Huang 1, John.
UAH Ground-based Ozone Lidar - A New NDACC Lidar Station Member NDACC Lidar Working Group Meeting, NASA/JPL, Table Mountain, CA Nov. 4, 2013
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Long-range transport of ozone from the Los Angeles Basin: A case study A.O. Langford 1, C. J. Senff 2, R.J Alvarez 1 II, R. M. Banta 1, R.M. Hardesty 1.
Ability of GEO-CAPE to Detect Lightning NOx and Resulting Upper Tropospheric Ozone Enhancement Conclusions When NO emissions from lightning were included.
Shi Kuang 1, Mike Newchurch 1, John Burris 2, Wesley Cantrell 1, Guanyu Huang 1 1 U. Of Alabama in Huntsville, 2 NASA/GSFC
Application of a High-Pulse-Rate, Low-Pulse-Energy Doppler Lidar for Airborne Pollution Transport Measurement Mike Hardesty 1,4, Sara Tucker 4*,Guy Pearson.
Tropospheric Ozone Laminar Structures and Vertical Correlation Lengths Michael J. Newchurch 1, Guanyu Huang 1, Brad Pierce 3, John Burris 2, Shi Kuang.
Tropospheric Ozone Lidar Network (TOLNet) – Long-term Tropospheric Ozone and Aerosol Profiling for Satellite Continuity and Process Studies Mike Newchurch.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Complementary Ground-based and Space-borne Profile Measurements for Air Quality presented at 1 st Workshop Satellite and Above-boundary-layer Observations.
TOLNet Mike Newchurch 1, Jassim A. Al-Saadi 3,5, Raul J. Alvarez 2, John Burris 4, Wesley Cantrell 1, Gao Chen 5, Russell DeYoung 5, R. Michael Hardesty.
Mike Newchurch 1, R. J. Alvarez 2, Jay Al-Saadi 3, John Burris 4, Russell DeYoung 5, John Hair 5, Mike Hardesty 2, Shi Kuang 1, A. O. Langford 2, Thierry.
Lidar Working Group on Space-Based Winds, Snowmass, Colorado, July 17-21, 2007 A study of range resolution effects on accuracy and precision of velocity.
An Interagency Research Initiative for Ground-Based Lidar Profiling of Tropospheric Ozone and Aerosol CENRS Air Quality Research Subcommittee Nov. 17,
Summer Institute in Earth Sciences 2009 Comparison of GEOS-5 Model to MPLNET Aerosol Data Bryon J. Baumstarck Departments of Physics, Computer Science,
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
TOLNet/UAH Station Report – Operation, Upgrade, and Future Plan TOLNet Working Group Meeting, NOAA/ESRL/CSD, Boulder, CO June 16 15:30, 2015
TOLNet Overview and Charge to the Group Mike Newchurch.
Mike Newchurch 1, Shi Kuang 1, John Burris 2, Steve Johnson 3, Stephanie Long 1 1 University of Alabama in Huntsville, 2 NASA/Goddard Space Flight Center,
A DEPLOYABLE MODULAR WIND PROFILER RADAR FOR LOWER ATMOSPHERE APPLICATIONS William Brown, Steve Cohn, Brad Lindseth National Center for Atmospheric Research.
Measurement Example III Figure 6 presents the ozone and aerosol variations under a light-aerosol sky condition. The intensity and structure of aerosol.
EOS Aura Science Team Meeting, October, 2008, Columbia, MD AURA OMI Ozone Profiles for Large-scale CMAQ Boundary Conditions with Lightning Effects.
Tropospheric ozone variations revealed by high resolution lidar M. J. Newchurch 1, John Burris 2, Shi Kuang 1, Guanyu Huang 1, Wesley Cantrell 1, Lihua.
Melanie Follette-Cook Christopher Loughner (ESSIC, UMD) Kenneth Pickering (NASA GSFC) CMAS Conference October 27-29, 2014.
Ozone Lidar Observations for Air Quality Studies Lihua Wang 1, Mike Newchurch 1, Shi Kuang 1, John F. Burris 2, Guanyu Huang 3, Arastoo Pour-Biazar 1,
Planetary Boundary-layer Ozone Flux using Ozone DIAL and Compact Wind Aerosol Lidar (CWAL) in Huntsville AL Guanyu Huang 1, Michael J. Newchurch 1, Shi.
1 Mike3/papers/tropoz/aguf98 12/2/98 16:30 M.J. Newchurch, K.A. Fuller, D.A. Bowdle University of Alabama in Huntsville Working Group on Space-Based Lidar.
Michael J. Newchurch 1*, Shi Kuang 1, Lihua Wang 1, Kevin Knupp 1, Thierry Leblanc 2, Raul J. Alvarez II 3, Andrew O. Langford 3, Christoph J. Senff 3,4,
Goal: “What are the sources and physical mechanisms that contribute to high ozone concentrations aloft that have been observed in Central and Southern.
Jinlong Li 1, Jun Li 1, Christopher C. Schmidt 1, Timothy J. Schmit 2, and W. Paul Menzel 2 1 Cooperative Institute for Meteorological Satellite Studies.
C. J. Senff, R. J. Alvarez II, R. M. Hardesty, A. O. Langford, R. M. Banta, W. A. Brewer, F. Davies, S. P. Sandberg, R. D. Marchbanks, A. M. Weickmann.
SPEAKERS: Gabriele Pfister, Scientist III, National Center for Atmospheric Research (NCAR) Brad Pierce, Physical Scientist, NOAA Salient Questions: 1.What.
Validation of OMI NO 2 data using ground-based spectrometric NO 2 measurements at Zvenigorod, Russia A.N. Gruzdev and A.S. Elokhov A.M. Obukhov Institute.
Mike Newchurch 1, Jassim A. Al-Saadi 2,3, Raul J. Alvarez 4, John Burris 5, Wesley Cantrell 1, Gao Chen 3, Russell DeYoung 3, R. Michael Hardesty 4, Jerry.
Measurement Example III Figure 6 presents the ozone and aerosol variations under a light-aerosol sky condition. The intensity and structure of aerosol.
Sub-hourly Variation of Tropospheric Ozone Profiles Measured by the Huntsville DIAL Shi Kuang 1*, John Burris 2, M. J. Newchurch 1*, Steve Johnson 3, and.
Institute of Atmospheric Physic
Shi Kuang 1, Mike Newchurch 1,John Burris 2, Wesley Cantrell 1, Patrick Cullis 3, Ed Eloranta 4, Guanyu Huang 1, Bryan Johnson 3, Kevin Knupp 1, Lihua.
1 Monitoring Tropospheric Ozone from Ozone Monitoring Instrument (OMI) Xiong Liu 1,2,3, Pawan K. Bhartia 3, Kelly Chance 2, Thomas P. Kurosu 2, Robert.
Simulation Experiments for TEMPO Air Quality Objectives Peter Zoogman, Daniel Jacob, Kelly Chance, Xiong Liu, Arlene Fiore, Meiyun Lin, Katie Travis, Annmarie.
A new method for first-principles calibration
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
NOAA Airborne Doppler Update Mike Hardesty, Alan Brewer, Brandi McCarty and Christoph Senff NOAA/ETL and University of Colorado/CIRES Gerhard Ehret, Andreas.
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
Validation of OMI and SCIAMACHY tropospheric NO 2 columns using DANDELIONS ground-based data J. Hains 1, H. Volten 2, F. Boersma 1, F. Wittrock 3, A. Richter.
ISTP 2003 September15-19, Airborne Measurement of Horizontal Wind and Moisture Transport Using Co-deployed Doppler and DIAL lidars Mike Hardesty,
Convective Transport of Carbon Monoxide: An intercomparison of remote sensing observations and cloud-modeling simulations 1. Introduction The pollution.
M. Newchurch 1, A. Biazar 1, M. Khan 2, B. Koshak 3, U. Nair 1, K. Fuller 1, L. Wang 1, Y. Park 1, R. Williams 1, S. Christopher 1, J. Kim 4, X. Liu 5,6,
Meteorological drivers of surface ozone biases in the Southeast US
Spatio-temporal Variability 2nd GEO-CAPE Community Workshop
INTERCONTINENTAL TRANSPORT: CONCENTRATIONS AND FLUXES
Diurnal Variation of Nitrogen Dioxide
2019 TEMPO Science Team Meeting
Off-line 3DVAR NOx emission constraints
Presentation transcript:

Ground-based Lidar Network to Provide Ozone and Aerosol Data for Air-quality Study and GEO-CAP mission AQRS, Nov. 17, 2011 Mike Newchurch 1, Shi Kuang 1, R. J. Alvarez 3, John Burris 2, John Hair 5, Mike Hardesty 3, A. O. Langford 3, Stuart McDermid 6, Tom McGee 2, Brad Pierce 4, Christoph Senff 3, Lihua Wang 1 1 UAHuntsville 2 NASA/GSFC 3 NOAA/ESRL 4 University of Wisconsin 5 NASA/LaRC 6 NASA/JPL

Outline I. Motivation II. Scientific investigations III. Hardware configurations

I. Motivation of lidar measurements GEO-CAPE will measure tropospheric gases and aerosols at ~8km and hourly resolution. Vertical resolution is on the order of 5-10km in the troposphere. This vertical resolution is inadequate to resolve laminar structures that characterize tropospheric ozone and aerosols. Furthermore, GEO-CAPE information content in the PBL will likely be inadequate to resolve the processes responsible for air quality variability. We seek, therefore, to augment the spaceborne measurements with a ground-based measurement system. Ozonesondes are extensively used in various atmospheric chemistry studies because of their low upfront cost and well-characterized behavior. However, the whole process for a sonde launch typically requires four hours. And four-hour ozonesonde resolution is prohibitively expensive. We therefore consider lidars to provide the necessary spatial and temporal resolution. JPL-Table Mountain Facility 3

Comparison of the techniques for ozone observation a For OMI tropospheric ozone retrieval [Liu et al. 2010], [Worden et al. 2007]. b For ground-based only. The airborne lidar system can measure ozone with a 600-m spatial resolution, e.g., [Langford et al. 2011]. c For ground-base system, e.g., Sunnesson et al.1994; Proffitt and Langford 1997; Kuang et al The temporal resolution is strongly related to the retrieval uncertainty. Generally longer integration time will reduce the uncertainty arising from statistical error. d The estimated cost is based on $800/launch and launching 6 sondes every day. e Fishman J. et al. manuscript, in prep. OzonesondeGround-based lidarSun-synchronous Satellite (OMI) a Geostationary satellite (GEO- CAPE) e Vertical resolution ~100m m10-14km Spatial coverage PointPoint b GlobalLand and coastlines over o N band Spatial resolution N/AN/A b 13X48km at nadir8km Temporal resolution Typically 1 week, max 4 hr 2-30 min c Typically 1 day1 hr Meas. uncertainty 10%Typically 10% at the near range and 20% at the far range 6%-35% Cost Typically $40k/year, max $1,752k/year d ~$ k/year for fixed station high Major strength well-characterized, low up- front cost, good vertical resolution, High temporal resolution, low cost for frequent routine measurement global coverage, high accuracy on total column retrieval High spatio-temporal resolution relative to sun-sny satellite Major weakness Low temporal resolutionUnable to measure ozone above thick cloud, higher up- front cost relative to sonde Low vertical resolution (particularly limited to resolve PBL) 4

O3 measurement with a 4-hour temporal resolution 5

ozonesonde Lidar ozone curtain with10-minute resolution 6

II. Scientific investigations addressed by the lidar network

May 01May 02May 03May 04May 05May 06May 07May 08 May 3, 2010 Daytime PBL top collapsed Model (RAQMS) validation (simulated by B. Pierce) 8 May 4 May 5 May 6 (high PBL O3) Missed May 7 EPA surface

Co-located ceilometer backscatter Low-level jet Co-located wind profiler Positive correlation of ozone and aerosol due to transport Oct. 4, 2008 Kuang et al. Atmospheric Environment 2011 Aerosol Lidar O3 Transport: Nocturnal O3 enhancement associated with low-level jet Oct. 2, 08 Oct. 3, 08 Oct. 1, 08 Oct. 5, 08 Oct. 6, 08 Oct. 4, 08 Surface O3 and convective boundary layer height Higher increasing rate of the surface O3 due to the low-level transport on the previous day

Local time GOME total O 3 Nov. 5 Stratospheric O 3, zero RH Sonde Stratosphere-to-troposphere transport and its CMAQ Model simulation, Nov. 5, 2010 Huntsville Lidar O3 Ozonesonde showing the high O3 and dry layer 10 Modeled by Arastoo Pour-Biazar

High-resolution PBL lidar observation suggests both UV and Vis radiances required to capture significant PBL signal for satellite Huntsville lidar observation on Aug. 4, 2010 Lidar obs. convolved with OMI UV averaging kernel---- unable to capture the highly variable ozone structure in PBL Lidar obs. Convolved with OMI UV-Vis averaging kernel- ---Captures the PBL ozone structure. X. Liu et al. 11

TOPAZ applications TexAQS 2006: Quantifying horizontal transport of O 3 downwind from Houston and Dallas Cross sections of ozone downwind of Houston measured with TOPAZ on 08/14/2006. Ozone fluxes are computed for each transect by integrating above-background ozone across the plume and multiplying with horizontal wind speed measured with radar wind profilers. Ozone fluxes as a function of plume age downwind from Houston and Dallas (includes data from TexAQS 2000). Senff, C. J. et al., 2010: Airborne lidar measurements of ozone flux downwind of Houston and Dallas, J. Geophys. Res., 115, D20307, doi: /2009JD

TOPAZ applications Pre-CalNex 2009: Orographic lifting & long-range transport of O 3 originating in the Los Angeles Basin SMOG model predictions (top) compared with TOPAZ lidar observations (bottom). 48-h (solid) and 60-h (dotted) forward trajectories suggesting long-range transport aloft of O 3 from Los Angeles to Utah and Colorado. Langford, A. O., et al., 2010: Long-range transport of ozone from the Los Angeles Basin: A case study, Geophys. Res. Lett., doi: /2010GL

Stratospheric contribution to high surface ozone in Colorado during springtime A.O. Langford, K.C. Aikin 1, C.S. Eubank 1, E.J Williams 1 Chemical Sciences Division ESRL, NOAA, Boulder, Colorado USA 1 also at Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA. Langford NOAA/ESRL/CSD Stratospheric Tropospheric

E.J. Williams Surface O 3 and CO anticorrelated Langford NOAA/ESRL/CSD

CDPHE and NPS monitors Surface O 3 increased from 55 to 100 ppbv in RMNP! Langford NOAA/ESRL/CSD

JPL/TMF ozone & water vapor lidars Ozone (left) and water vapor (Right) with 10 minute resolution showing the progression of a stratospheric intrusion and the anti-correlation between ozone and water. O3H2O 17 S. McDermid slides

III. Sites and the hardware configurations

19 UAH NASA/LaRC JPL/TMF NOAA/ESRL Initiative sites of the ground-based lidar network to provide O3 and aerosol data for air-quality study and GEO-CAP mission 19 NASA/GSFC

UAHuntsville future configuration 1.3- λ ( ) system to minimize aerosol interference 2.Adding a 1-inch mini receiver channel to reduce the lowest measurement altitude to ~100m from the current 500m Schematic diagram of the future transmitters, wavelength pairs, and their measurement ranges. Different colors refer to the different PMT channels. 20

Diagram of the future receiving system - 3 receiver channels covering km 21

TOPAZ: NOAA’s airborne Ozone/Aerosol Lidar (TOPAZ = Tunable Optical Profiler for Aerosols and oZone) Compact, light-weight, all solid state lidar 3 tunable UV wavelengths Designed for nadir-looking deployment on NOAA Twin Otter Measures ozone and aerosol backscatter profiles Altitude coverage: from near the surface up to 5 km MSL Resolution (O 3 ): 90 m vertical, 600 m horizontal Precision (O 3 ) : 2-15 ppb

TOPAZ modifications for ground-based, scanning operation 1.Invert telescope to zenith-looking 2.Install in truck with roof top scanner

Scan strategy & expected performance of ground-based TOPAZ Anticipated instrument performance  Time resolution: 1 min per angle; 5 min per scan sequence  Range/altitude resolution: 90 m; 3 – 90 m  Range/altitude coverage: 400 m – 4 km; 17 m – 4 km AGL  Precision: 1 – 10 ppb (SNR and range dependent) 90º 10º 2º 17 m AGL ~4 km AGL 3-angle scan sequence designed to provide composite O 3 profiles from 17 m to approx. 4 km AGL. Horizontal stares will be performed occasionally.

Deployments of ground-based TOPAZ in FY Uintah Basin Ozone Study (UBOS)  The UBOS study is designed to examine in detail the role of local atmospheric chemistry and meteorology in producing high wintertime O 3 concentrations in the Uintah Basin in NE Utah.  TOPAZ will provide horizontal and vertical profiles of ozone as well as estimates of boundary layer height.  Time frame: February/March Local measurements (Boulder, Fritz Peak)  TOPAZ will measure vertical profiles of ozone at regular intervals at NOAA/ESRL in Boulder or at the Fritz Peak Observatory to a) provide a vertical context for the routine surface O 3 observations in the greater Denver area and b) extend the record of mid-tropospheric ozone profile measurements by Langford et al. from the 1990s.  Time frame: April – September 2012

LaRC ozone lidar Telescope Lidar Control DAQ System Receiver Box Laser Transmitter 1. Ground-based, but can be modified to a mobile system 2. Tunable two wavelengths within nm for O3 measurement nm for aerosol measurement 26

GSFC tropospheric ozone lidar 27 Schematic of the Non-Linear Optics bench within the laser. The Nd-YAG laser is mounted upside down on the underside of the NLO bench. The 1064 nm pump beam enters the NLO bench at the lower right.

Comparison of the target configurations of the O3 lidars at different sites SiteCharacteristicsStrengthWeakness JPL/TMFQuadruple YAG pumped raman laser, 3-λ,3-receiver 355nm channel measuring aerosol Fixed location, Limited daytime measurements NOAA/ESRLNd:YLF pumped Ce:LiCAF tunable 2-λ,1-receiver, scanning, mobile Tunable wavelength, Scanning, mobile Only 2-λ, potential aerosol interference, limited alt measurement range UAHuntsvilleQuadruple YAG pumped raman laser, 3-λ,3-receiver Low PBL measurement, dual- DIAL removing aerosol effect Fixed location, limited alt measurement range during daytime NASA/GSFCHigh freq. OPO, 2-λ,1-receiverTunable wavelength, can be mobile Potential aerosol interference NASA/LaRCNd:YLF pumped Ce:LiCAF tunable 2-λ,1-receiver, scanning, mobile Tunable wavelength, Scanning, mobile Only 2-λ, potential aerosol interference, limited alt measurement range

Conclusion