16 January 2003STScI TIPS1 JWST's Near-Infrared Detectors: Ultra-Low Background Operation and Testing Bernie Rauscher, Don Figer, Mike Regan, Sito Balleza,

Slides:



Advertisements
Similar presentations
The James Webb Space Telescope & its Infrared Detectors Bernard J. Rauscher 1 & Mike Ressler 2 for the JWST Team 1 NASA Goddard Space Flight Center 2 NASA.
Advertisements

Observational techniques meeting #7. Detectors CMOS (active pixel arrays) Arrays of pixels, each composed on a photodetector (photodiode), amplifier,
Discussion of CalWebb contents M. Robberto (facilitator)
Application of the SIDECAR ASIC as the Detector Controller for ACS and the JWST Near-IR Instruments Markus Loose STScI Calibration Workshop July 22, 2010.
STScI TIPS 19 January 2006 Removing SAA-Persistent Cosmic Ray Flux from NICMOS Anton Koekemoer (INS) 1 Removing SAA-Persistent Cosmic Ray Flux from NICMOS.
Astronomical Detectors
European Southern Observatory
Semiconductor Light Detectors ISAT 300 Foundations of Instrumentation and Measurement D. J. Lawrence Spring 1999.
Optical image tube with Medipix readout
James Webb Space Telescope : Characterization of Flight Candidate of Raytheon NIR InSb Arrays 5 Aug 2003 Craig McMurtry, William Forrest, Andrew Moore,
JWST Radiation Environment 1March 13, 2003 Reference pixels and readout modes: What we have learned thus far Don Figer, Bernie Rauscher, Mike Regan March.
SB270 ORION InSb 2K X 2K FPA Status: Newfirm FPAs in production –Four times the magic of Aladdin! –Nearly all SCAs have > 99% indium bump interconnect.
Silicon PIN Diodes: A Promising Technology for UV-Optical Space Astronomy 11 April 2003 Presentation at NHST Workshop Bernard J. Rauscher, Donald F. Figer,
Focal Plane Array Testing and Applications for Astronomy Donald Figer Space Telescope Science Institute.
RIT Course Number Lecture Noise
RIT Course Number Lecture CMOS Detectors
AAS Don Figer January 9, 2003 The JWST Detector Characterization Project in the Independent Detector Testing Laboratory Don Figer, STScI/JHU January.
Detectors for the JWST Near Infrared Spectrograph (NIRSpec) B.J. Rauscher 1, P. Strada 2, M.W. Regan 3, D.F. Figer 3, P. Jakobsen 2, S.H. Moseley 1, T.
Simple Technique for Suppression of Line Frequency Noise in IR Array Systems Bruce Atwood, Jerry A Mason, and Daniel Pappalardo The Ohio State University.
1 Ultra low background characterization of Rockwell Scientific MBE HgCdTe arrays Donald N. B. Hall, University of Hawaii, Institute for Astronomy, Honolulu,
1.What is the shape of the Universe? 2.How do galaxies evolve? 3.How do stars and planetary systems form and interact? 4.How did the Universe build up.
Photo courtesy NOAO, taken with LBNL fully depleted CCD Optical Characterization of 1.7  m NIR Detectors for SNAP M. Brown (Michigan), J. Balleza (IDTL),
14 January 2003Special LASP Seminar at GSFC1 JWST's Near-Infrared Detectors: Ultra-Low Background Operation and Testing Bernard J. Rauscher Space Telescope.
April 23, 2008 Astro 890 Detectors Wide, High, Deep, and Sensitive.
1D or 2D array of photosensors can record optical images projected onto it by lens system. Individual photosensor in an imaging array is called pixel.
Charge-Coupled Device (CCD)
An Overview of Detectors (with a digression on reference pixels) Bernard J. Rauscher NASA Goddard Space Flight Center 22 July 20101STScI Calibration Workshop.
Quantum Efficiency Measurements of a NIRSpec infrared sensor in the ODL* Peter McCullough, Project P. I. Mike Regan, ODL Lead Kevin Lindsay Eddie Bergeron.
Understanding Persistence: A 3D Trap Map of an H2RG Imaging Sensor
CCD Detectors CCD=“charge coupled device” Readout method:
Telescope Guiding with a HyViSI H2RG Used in Guide Mode Lance Simms Detectors for Astronomy /2/09.
Characterization of a Large Format HgCdTe on Silicon Focal Plane Array
NIRCam DHAS and Array Characterization
NIRSpec Operations Concept Michael Regan(STScI), Jeff Valenti (STScI) Wolfram Freduling(ECF), Harald Kuntschner(ECF), Robert Fosbury (ECF)
Project Technology Branch Code PMF NASA Ames Research Center  Craig R. McCreight, Chief Detector team (Cryo team not listed) Kim EnnicoRoy Johnson John.
10/26/20151 Observational Astrophysics I Astronomical detectors Kitchin pp
ODL: Status and Issues Mike Regan, Eddie Bergeron, Kevin Lindsay, & Doug Long.
Astronomical Institute University of Bern 31th IADC Meeting, April , 2013, ESOC, Darmstadt, Germany Improved Space Object Observation Techniques.
Observational Astrophysics I
TIPS - Oct 13, 2005 M. Sirianni Temperature change for ACS CCDs: initial study on scientific performance M. Sirianni, T. Wheeler, C.Cox, M. Mutchler, A.
MOS Data Reduction Michael Balogh University of Durham.
1 Astronomical Observational Techniques and Instrumentation RIT Course Number Professor Don Figer Noise.
Astronomical Observational Techniques and Instrumentation
Astronomical Observational Techniques and Instrumentation
in collaboration with Jamie Holder & Vladimir Vassiliev
11-Jun-04 1 Joseph Hora & the IRAC instrument team Harvard-Smithsonian Center for Astrophysics The Infrared Array Camera (IRAC) on the Spitzer Space Telescope.
Basic Detector Measurements: Photon Transfer Curve, Read Noise, Dark Current, Intrapixel Capacitance, Nonlinearity, Reference Pixels MR – May 19, 2014.
The InGaAs IR Array of Chunghwa Telecom Laboratory Chueh-Jen Lin and Shiang-Yu Wang, Optics and Infrared Laboratory In 2006, Advanced Technology Laboratory.
February 21, 2002TIPS meeting1 "Data contained herein is exempt from ITAR regulations under CFR 125.4(13) -- data approved for public disclosure." TIPS.
CCD Image Processing: Issues & Solutions. CCDs: noise sources dark current –signal from unexposed CCD read noise –uncertainty in counting electrons in.
Scientific DetectorWorkshop, 2005 Taormina Characterization of 1.7um cutoff detectors for SNAP Roger Smith Caltech.
Spectrograph focal plane 2003 Goals : CCD l Improved CCD Cryostat connections, decoupling, preamp box photodiodes for efficiency monitoring thermistances.
Focal Plane Arrays and Focal Plane Electronics for Large Scientific Telescopes The HAWAII-2RG (H2RG) is the leading IR focal plane array (FPA) in ground-
Single Object Slitless Spectroscopy Simulations
JWST Radiation Environment
Relative Spectral Response and Flat Fields with Internal Calibration Lamps Luisa M. Lara IAA-CSIC Granada (SPAIN)
Single Object & Time Series Spectroscopy with JWST NIRCam
JWST NIRCam Time Series Observations
Detectors of JWST Near IR Instruments
Bernard J. Rauscher Space Telescope Science Institute
Infrared Detectors Grown on Silicon Substrates
Preliminary Design Review
Persistence Experiment Preliminary Design Review
Detector Basics The purpose of any detector is to record the light collected by the telescope. All detectors transform the incident radiation into a some.
Preliminary Design Review
Detector Parameters Marco Sirianni - ESA.
Detector Characterization Project in the
Persistence Experiment Preliminary Design Review
Dark Current Experiment Preliminary Design Review
IN5350 – CMOS Image Sensor Design
Presentation transcript:

16 January 2003STScI TIPS1 JWST's Near-Infrared Detectors: Ultra-Low Background Operation and Testing Bernie Rauscher, Don Figer, Mike Regan, Sito Balleza, Robert Barkhouser, Eddie Bergeron, Gretchen Greene, Ernie Morse, Steve McCandliss, Russ Pelton & Tom Reeves And coming soon!

16 January 2003STScI TIPS2 Outline What is a Near-Infrared Array Detector? JWST Science Drivers Detector Requirements Detector testing at STScI/JHU Optimal Use Summary

16 January 2003STScI TIPS3 JWST’s IR Arrays are “Hybrid” Sensors PN junctions are “bump bonded” to a silicon readout multiplexer (MUX). Silicon technology is more advanced than other semiconductor electronics technology. The “bump bonds” are made of indium.

16 January 2003STScI TIPS4 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E Wavelength [  m] Signal [e-/sec/pix] Zodiacal Light Sunshield JWST requirement JWST goal R=5 R=1000 JWST Needs Very Good Near Infrared Detectors! Completing the JWST Design Reference Mission “on time” requires background limited near- infrared (NIR) broadband imaging Zodiacal light is the dominant background component in the NIR The total NIR detector noise requirement is therefore =10 e- rms in a t=1000 seconds exposure. NIRSpec will probably be detector noise limited. The total noise goal is =3 e- rms per 1000 seconds exposure

16 January 2003STScI TIPS5 JWST Near Infrared (NIR) Detector Requirements

16 January 2003STScI TIPS6 Detector Testing at STScI/JHU: Independent Detector Testing Laboratory

16 January 2003STScI TIPS7 Past and present personnel Eddie Bergeron Data Analyst Mike Telewicz Intern Gretchen Greene Mechanical Engineer Monica Rivera Intern Russ Pelton Technician Tom Reeves Lab Technician Bernie Rauscher Project Scientist Steve McCandliss JHU Lead Scott Fels Intern Sito Balleza Systems Engineer Robert Barkhouser Optical Engineer Utkarsh Sharma Graduate Student Ernie Morse Data Analyst Don Figer Director Mike Regan System Scientist

16 January 2003STScI TIPS8 IDTL Experiments Read noise Conversion Gain Dark current Linearity Electronic Gain Latent charge (persistence) Relative and Absolute Quantum efficiency (QE) Intra-pixel sensitivity

16 January 2003STScI TIPS9 Dark Current Lowest measured dark current is ~0.006 e  /s/pixel.

16 January 2003STScI TIPS10 Read noise is ~10 e  for Fowler-8. (system read noise is ~2.5 e  ) IDTL Measurements: Read Noise

16 January 2003STScI TIPS11 IDTL Measurements: Conversion Gain Per correlated double sample

16 January 2003STScI TIPS12 IDTL Test System Hawaii Detector Hawaii Shirt

16 January 2003STScI TIPS13 Then & Now November 2000 November 2002

16 January 2003STScI TIPS14 IDTL First Light Images Jan. ‘01 (MUX) Raytheon ALADDIN Feb. ‘02 (MUX)Apr. ‘02 (SCA) Rockwell HAWAII-1R Rockwell HAWAII-1RG Jun. ‘02 (MUX)Jul. ‘02 (SCA) Raytheon SB-304 Nov. ‘02 (MUX) Rockwell HAWAII-2RG Jan. ‘03 (MUX)

16 January 2003STScI TIPS15 IDTL Test System Leach II Controller Electronics Vacuum Hose He Lines Entrance Window Dewar

16 January 2003STScI TIPS16 Detector Readout System Unix Instrument Control Computer COTS Leach II IR Array Controller Warm Harness Cryogenic Harness Detector Customization Circuit JWST SCA T~293 K T=30-50 K

16 January 2003STScI TIPS17 An Adaptable Readout System The only hardware change required to run a different detector is swap-in a DCC. We have DCCs for the following detectors. –Raytheon SB-290 SB-304 –Rockwell HAWAII-1R HAWAII-1RG HAWAII-2RG Each DCC is a multi-layer PCB. Extensive use of surface mount technology. Includes flexible “neck” to simplify interfacing. Rockwell HAWAII-2RG Detector Customization Circuit (DCC)

16 January 2003STScI TIPS18 Close-up of Detector Customization Circuits (DCCs) Rockwell HAWAII-2RG Raytheon SB-290/SB-304

16 January 2003STScI TIPS19 Optimal Use JWST Detector Readout Strategies Use of Reference Pixels

16 January 2003STScI TIPS20 Detector Readout JWST science requires MULTIACCUM and SUBARRAY readout. Other readout “modes” can be implemented using parameters. –For example, Fowler-8 can be implemented as MULTIACCUM- 2x8. Cosmic rays may be rejected either on the ground or on-orbit. MULTIACCUM parameters: t expose = exposure time, t 1 = frame time, and t 2 = group time. The small overhead associated with finishing the last group of samples is not included in the exposure time. MULTIACCUM Detector Readout

16 January 2003STScI TIPS21 Reference Pixels Raytheon 2Kx2K NIR Module Rockwell 2Kx2K NIR Module All candidate JWST detectors have reference pixels Reference pixels are insensitive to light In all other ways, designed to mimic a regular light-sensitive pixel NIR detector testing at University of Rochester, University of Hawaii, and in the IDTL at STScI -> reference pixels work! Reference pixel subtraction is a standard part of IDTL data reduction pipeline Raytheon 1024x1024 MIR MUX

16 January 2003STScI TIPS22 Use of Reference Pixels We have begun to explore how reference pixels should be used. Approaches considered include the following. –Maximal averaging (average all reference pixels together and subtract the mean) –Spatial averaging –Temporal averaging Spatial averaging is now a standard part of IDTL calibration pipeline

16 January 2003STScI TIPS23 A Picture of IDTL System Noise Shorting resistor mounted at SCA location 1/f “tail” causes horizontal banding. Total noise is =7 e- rms per correlated double sample.

16 January 2003STScI TIPS24 Averaging small numbers of reference pixels adds noise Averaged the last 4 columns in each row and performed row- by-row subtraction Before After

16 January 2003STScI TIPS25 Spatial Averaging In spatial averaging, data from many (~64 rows) of reference pixels are used to calibrate each row in the image A Savitzky-Golay smoothing filter is used to fit a smooth and continuous reference column This reference column is subtracted from each column in the image Using this technique, we can remove some 1/f noise power within individual frames In practice, this technique works very well This is a standard part of the IDTL data calibration pipeline

16 January 2003STScI TIPS26 Spatial Averaging: Before & After Before After

16 January 2003STScI TIPS27 Spatial Averaging: Example using Rockwell HAWAII-1RG Detector Rockwell HAWAII-1RG Double Correlated Sampling image. Read noise is ~15 e- rms (=5.3 e- using Fowler-8 sampling). Fit to reference columns using Savitzky-Golay filtering to smooth averaged reference pixel data in each row..

16 January 2003STScI TIPS28 Spatial Averaging Works! IDTL dark ramp. Astrisks include reference pixel correction using the Spatial Averaging method. Pluses do not. Fitted slope is =0.006 ±.001 e-/s/pixel.

16 January 2003STScI TIPS29 Temporal Averaging Dwell on the reference pixel and sample many times before clocking next pixel Potentially removes most 1/f Not tried this in IDTL yet. U. Hawaii has reported some problems with reference pixels heating up

16 January 2003STScI TIPS30 Temporal Averaging: Before & After Before After

16 January 2003STScI TIPS31 Summary The Independent Detector Testing Laboratory (IDTL) at STScI/JHU is up and running Test results including dark current, read noise, conversion gain, and persistence are in good agreement with other JWST test labs Reference pixels work and are an invaluable part of the data calibration pipeline Spatial averaging works well and is robust