Method To determine the multiplicity parameter and the magnetization parameter  one can use the dependence on the visible position of the core of the.

Slides:



Advertisements
Similar presentations
Bloody Stones Towards an understanding of AGN engines Mike J. Cai ASIAA, NTHU April 4, 2003.
Advertisements

Radio and X-ray emission in radio-quiet quasars Katrien C. Steenbrugge, Katherine M. Blundell and Zdenka Kuncic Instituto de Astronomía, UCN Department.
Flare peak analysis v.s. core shift : The same optical thickness transition surface? Valtaoja, A&A, 254, 71 (1992) Flare peak analysis Haga+, EPJWC, 61,
Modeling the SED and variability of 3C66A in 2003/2004 Presented By Manasvita Joshi Ohio University, Athens, OH ISCRA, Erice, Italy 2006.
The Phase-Resolved Spectra of the Crab Pulsar Jianjun Jia Jan 3, 2006.
1 Recollimation Shock, Transverse Waves and the Whip in BL Lacertae M.H. Cohen Caltech Granada 13 vi 2013.
Quasars, Active Galactic Nuclei (AGN), and Black Holes What is an “active galaxy” or “quasar”? How is it different from a “normal” galaxy? 1. Much, much.
A Polarization Study of the University of Michigan BL Lac Object Sample Askea O'Dowd 1, Denise Gabuzda 1, Margo Aller University College Cork 2 -
Kinematics of Jets of Gamma-Ray Blazars from VLBA Monitoring at 43 GHz Svetlana Jorstad Boston University, USA St.Petersburg State University, Russia VLBA.
Active Galactic Nuclei Astronomy 315 Professor Lee Carkner Lecture 19.
VLBI Imaging of a High Luminosity X-ray Hotspot Leith Godfrey Research School of Astronomy & Astrophysics Australian National University Geoff Bicknell,
1 Disk-Jet Connection in the Radio Galaxies 3C 120 and 3C 111 Ritaban Chatterjee NERQUAM 2010, May 18th, 2010.
Active Galaxies PHYS390 Astrophysics Professor Lee Carkner Lecture 22.
Astrophysical Jets Robert Laing (ESO). Galactic black-hole binary system Gamma-ray burst Young stellar object Jets are everywhere.
Numerical Modeling of Electromagnetic Radiation from AGN Jets Based on  -ray emission and spectral evolution of pair plasmas in AGN jets Bottcher et al.
Active Galactic Nuclei (or AGN) Seyfert galaxies have very small (unresolved), extremely powerful centers! The strength of the emission lines vary on timescales.
Galaxies and the Foundation of Modern Cosmology III.
Multi-Frequency Circular Polarization Measurements of the Quasar 3C279 At Centimeter Wavelengths H.D. Aller and M.F. Aller (U. of Michigan) Introduction.
Jets and lenses. 2 Plan and reviews Reviews astro-ph/ High-Energy Aspects of Astrophysical Jets astro-ph/ Extreme blazars astro-ph/
AGN (Continued): Radio properties of AGN I) Basic features of radio morphology II) Observed phenomena Superluminal motion III) Unification schemes.
Statistical analysis of model-fitted inner-jets of the MOJAVE blazars Xiang Liu, Ligong Mi, et al. Xinjiang Astronomical Observatory (Former Urumqi Observatory),
S. Jorstad / Boston U., USA A. Marscher / Boston U., USA J. Stevens / Royal Observatory, Edinburgh, UK A. Stirling / Royal Observatory, Edinburgh, UK M.
Multiwaveband Opportunities to Study AGN (Mostly Blazars) Detected by Fermi Alan Marscher Boston University, Incoming Chair of Fermi Users Group Research.
Spectra of partially self-absorbed jets Christian Kaiser University of Southampton Christian Kaiser University of Southampton.
Extended X-ray Emissions from the Radio Galaxies Centaurus B and Fornax A Makoto Tashiro 1, Naoki Isobe 2, Masaya Suzuki 1 Kouichi Ito 1, Keiichi Abe 1,
1 Juri Poutanen University of Oulu, Finland (Stern, Poutanen, 2006, MNRAS, 372, 1217; Stern, Poutanen, 2007, MNRAS, submitted, astro- ph/ ) A new.
I.Introduction  Recent evidence from Fermi and the VLBA has revealed a strong connection between ɣ -ray emission in AGNs and their parsec-scale radio.
ASTR 113 – 003 Spring 2006 Lecture 11 April 12, 2006 Review (Ch4-5): the Foundation Galaxy (Ch 25-27) Cosmology (Ch28-29) Introduction To Modern Astronomy.
Prospects for observing quasar jets with the Space Interferometry Mission Ann E. Wehrle Space Science Institute, La Canada Flintridge, CA, and Boulder,
AGN Jets: A Review for Comparison with Microquasars & GRBs Alan Marscher Boston University Research Web Page:
S. Jorstad / Boston U., USA /St. Petersburg State U., Russia A.Marscher / Boston U., USA M. Lister / Purdue U., USA A. Stirling / U. of Manchester, Jodrell.
Investigation of different types radio sources by IPS method at 111MHz S.A.Tyul’bashev Pushchino Radio Astronomy Observatory, Astro Space Center of P.N.Lebedev.
The MOJAVE Program: Studying the Relativistic Kinematics of AGN Jets Jansky Postdoctoral Fellow National Radio Astronomy Observatory Matthew Lister.
15.4 Quasars and Other Active Galactic Nuclei Our Goals for Learning What are quasars? What is the power source for quasars and other active galactic nuclei?
Institute of Radio Astronomy of NASU, Kharkov
Black Holes in Other Galaxies. The giant elliptical galaxy M87 is located 50 million light-years away in the constellation Virgo. By measuring the rotational.
Gamma-rays, neutrinos and cosmic rays from microquasars Gustavo E. Romero (IAR – CONICET & La Plata University, Argentina)
Jets Two classes of jets from X-ray binaries
The Quasar : A Laboratory for Particle Acceleration Svetlana Jorstad IAR, Boston U Alan Marscher IAR, Boston U Jonathan Gelbord U. Durham Herman.
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
From the Black Hole to the Telescope: Fundamental Physics of AGN Esko Valtaoja Tuorla Observatory, University of Turku, Finland Metsähovi Radio Observatory,
Quasars and Active Galactic Nuclei
Low frequency observation of both pulsar wind and magnetodipole radiation from switch on-off pulsars Ya.N. Istomin P.N. Lebedev Physical Institute, Moscow,
ICRR 17/9/2001 Gamma-ray emission from AGN Qinghuan Luo School of Physics, University of Sydney.
Quasars, Active Galaxies, and Gamma-Ray Bursters Chapter Twenty-Seven.
Quasi-Periodicity in the Parsec-Scale Jet of the Quasar 3C345 - A High Resolution Study using VSOP and VLBA - In collaboration with: J.A. Zensus A. Witzel.
VHE  -ray Emission From Nearby FR I Radio Galaxies M. Ostrowski 1 & L. Stawarz 1,2 1 Astronomical Observatory, Jagiellonian University 2 Landessternwarte.
Multi - emission from large-scale jets Fabrizio Tavecchio INAF – Osservatorio Astronomico di Brera.
Mapping Magnetic Field Profiles Along AGN Jets Using Multi-Wavelength VLBI Data Mark McCann, Denise Gabuzda Department of Physics, University College Cork,
Universe Tenth Edition Chapter 24 Quasars and Active Galaxies Roger Freedman Robert Geller William Kaufmann III i  clicker Questions.
The non-thermal broadband spectral energy distribution of radio galaxies Gustavo E. Romero Instituto Argentino de Radio Astronomía (IAR-CCT La Plata CONICET)
Magnetic field structure of relativistic jets in AGN M. Roca-Sogorb 1, M. Perucho 2, J.L. Gómez 1, J.M. Martí 3, L. Antón 3, M.A. Aloy 3 & I. Agudo 1 1.
The jet of the LLAGN of M81: Evidence of Precession Antxon Alberdi Instituto de Astrofísica de Andalucía (IAA-CSIC) Iván Martí-Vidal (ALMA Nordic Node;
Gabuzda, Murray & Cronin astro-ph/
A Dynamic Model of Magnetic Coupling of a Black Hole with its surrounding Accretion Disk Huazhong University of Science & Technology ( , Beijing)
Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus). → “Active Galactic Nuclei” (= AGN) Up to many thousand.
Active Galactic Nuclei Origin of correlations.
Hydrodynamics of Small- Scale Jets: Observational aspects Esko Valtaoja Tuorla Observatory, University of Turku, Finland Metsähovi Radio Observatory, Helsinki.
Radio Loud and Radio Quiet AGN
EVOLUTION OF LUMINOSITY-LINEAR SIZE RELATION
VLBA Observations of Blazars
A.V. Chernoglazov Moscow Institute of Physics and Technology with
AY202a Galaxies & Dynamics Lecture 14: AGN: The Unified Model
Relativistic outflows and GLAST
Junior Research Fellow,
Active Galactic Nuclei (AGN)
AGN: Quasars By: Jay Hooper.
Galaxies With Active Nuclei
Lecture 7: Jets on all scales Superluminal apparent motions.
Compact radio jets and nuclear regions in galaxies
Presentation transcript:

Method To determine the multiplicity parameter and the magnetization parameter  one can use the dependence on the visible position of the core of the jet from the observation frequency [5-9]. This effect is associated with the absorption of the synchrotron photon gas by relativistic electrons in a jet. The apparent position of the nucleus is determined by the distance at which for a given frequency the optical depth reaches unity. Such measurements were performed in [13] for 20 objects (see Table 1). Observations at nine frequencies allowed to approximate the apparent position of the nucleus as a function of frequency where r 0 is the position of the bright area of the emission, r is the apparent position of the nucleus in mas, and is the frequency. Here, the quantities , measured in mas, and , measured in mas·GHz, are the measured parameters of this approximation. Knowing this dependence and assuming the equipartition of energy between the particles and the magnetic field, one can write down Here D L (Gpc) is the object distance,  (rad) is the opening angle of ejection,  (rad) is the angle of view,  is the Doppler factor, z is the red-shift, and K is the dimensionless function of the minimum and maximum Lorentz factor of electrons in their power-law distribution in energy [9]. Thus, for the 20 objects for which parameter  was measured, we can estimate the magnetization parameter . Introduction One of the most important parameters in magneto-hydrodynamic (MHD) models of relativistic jets is the dimensionless multiplicity parameter = n/n GJ, which is defined as the ratio of the particle concentration n to the so-called Goldrech-Julian (GJ) concentration n GJ =  B/2  ce (i.e., the minimum concentration required for the screening of the longitudinal electric field in the magnetosphere). It is important that the multiplicity parameter associates with the magnetization parameter , which determines the maximum possible bulk Lorentz factor of the flow, which can be achieved [1], where Here W tot (erg/s) is the total energy losses of the compact object. If the inner parts of the accretion disc are hot enough, these electron-positron pairs can be produced by two-photon collisions, the photons with sufficient energy delivering from the inner parts of the accretion disk [2]. In this case, ~ –10 13, and the magnetization parameter  ~ 10 2 – The second model takes into account the appearance of the region where the GJ plasma density is equal to zero because of the GR effects that corresponds to the outer gap in the pulsar magnetosphere [3, 4]. This model gives ~ 10 2 –10 3, and  ~ – Conclusions Table 1. The apparent frequency-dependent shift of the nuclei, the multiplicity parameter  and the magnetization parameter . Here  is taken from observations of 20 objects [13], the red-shift z is taken from [10], and the distance to the object was determined from the redshift. For the five objects for which the red-shift is unknown, we took z = 1. As the half-opening angle, the angle between the jets and the line of sight (viewing angle) and Doppler factors were taken typical values:  = 6,  = 9 o,  = 2 o, except for objects and Doppler factor and the angle of view for the source was taken from [6], and the half opening angle of jet of this object was taken from [12]. Doppler factor and viewing angle for is taken from [12]. In addition, we have put for the full power losses W tot = erg/s, which corresponds to the Eddington luminosity for the central object mass 10 9 M sun. Determination of a magnetization parameter of the parsec-scale AGN jets V.S. Beskin 1, Y.Y. Kovalev 1, E.E. Nokhrina 2 1 P.N.Lebedev Physical Institute, Moscow, Russia; 2 Moscow Institute of Physics and Technology, Dolgoprudny, Russia The obtained values of the multiplicity parameter  of the order –10 14 are consistent with the model [2]. At the same time, this value corresponds to the concentration of particles which were found in [5]. The magnetization parameter  of the order of 10 or several dozen is in agreement with the Lorentz factor values estimated [14] from VLBI jet kinematics measurements. Additionally, for Lorentz factor is suggested to be equal to 9.5 [3], whereas we found  = For we have  = 8.1 and  = In both cases  < . For different types of objects (quasars, blazars, and radio galaxies) found in [6] the average Lorentz factors range from 2 to 17, that is about ten, which support our point of view as well. Thus: 1. By measuring the apparent shift of the core jet emission as a function of frequency for 20 objects we obtained the estimates of the multiplicity ~ 10 13, which corresponds to the effective production of secondary particles. 2. For most objects the magnetized parameter  ~ 10, which is in good agreement with the observed superluminal motion. The frequency-dependent shift of the apparent parsec-scale AGN jet’ base allows us to determine a magnetization of jets. Results of the first estimate of the magnetization parameter are presented and discussed. Abstract The observed shift of the core of the relativistic AGN jets as a function of frequency allows us to evaluate the number density of outflowing plasma and, hence, the multiplicity parameter = n/n GJ. The value ~ obtained from the analysis of more than 20 sources shows that for most of jets the magnetization parameter  ~ 10–100. Since the magnetization parameter is the maximum possible value of the Lorentz factor of the relativistic bulk flow, this estimate is consistent with the observed superluminal motion. References [1] Beskin V.S. Phys. Uspekhi, 53, 1199 (2010)‏ [2] Blandford R., Znajek R.L., MNRAS, 179, 433 (1977). [3] Beskin V.S., Istomin Ya.N., Pariev V.I. Sov. Astron., 36, 642 (1992). [4] Hirotani K., Okamoto I., ApJ, 497, 563 (1998). [5] Lobanov A.P., A&A, 330, 79 (1998). [6] Howatta T., Valtaoja E., Tornikoski M., Lähteenmäki A., A&A, 498, 723 (2009). [7] Gould R.J., A&A, 76, 306 (1979). [8] Hirotani K., ApJ, 619, 73 (2005). [9] Marscher A.P., ApJ, 264, 296 (1983). [10] Kovalev Y.Y., Lobanov A.P., Pushkarev A.B., Zensus J.A., A&A, 483, 759 (2008). [11] Savolainen T.,Homan D.C., Hovatta T., Kadler M., Kovalev Y.Y., Lister M.L., Ros E., Zensus J.A., A&A, 512, A24 (2010). [12] Jorstad S.G. et al. Astron.J., 130, 1418 (2005). [13] Sokolovsky, K.V., et al., A&A, in press; arXiv: (2011). [14] Cohen, M.H., et al., ApJ, 658, 232 (2007).