Motion and Force Dynamics

Slides:



Advertisements
Similar presentations
Physics Subject Area Test
Advertisements

Chapter 5 – Force and Motion I
Forces and Newton’s Laws of Motion
Chapter 4 The Laws of Motion.
1 Chapter Four Newton's Laws. 2  In this chapter we will consider Newton's three laws of motion.  There is one consistent word in these three laws and.
Dr. Steve Peterson Physics 1025F Mechanics NEWTON’S LAWS Dr. Steve Peterson
Chapter 5 QuickCheck Questions
Forces and Newton’s Laws of Motion
Chapter 5: The laws of motion
Instructor: Dr. Tatiana Erukhimova
Chapter 4 The Laws of Motion. Forces Usually think of a force as a push or pull Usually think of a force as a push or pull Vector quantity Vector quantity.
Forces and The Laws of Motion
Chapter 4 Dynamics: Newton’s Laws of Motion
Chapter 5 Force and Motion
 To describe how a force affects the motion of an object.  To interpret and construct free body diagrams.  To recognize Newton's laws of motion in.
Newton’s Laws of Motion
Forces and Newton’s Laws of Motion
© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical.
Chapter 4 Forces and the Laws of Motion. Chapter Objectives Define force Identify different classes of forces Free Body Diagrams Newton’s Laws of Motion.
Unit 2 1D Vectors & Newton’s Laws of Motion. A. Vectors and Scalars.
1. What is a Force?  A force is a push or pull on an object by another object and measured in newton (N).  Forces are vectors 2 Force is a push Force.
Chapter 4 Newton’s Laws: Explaining Motion
AP Physics I.B Newton’s Laws of Motion. B.1 An interaction between two bodies resulting in a push or a pull is a force. Forces are of two types: contact.
What is the normal force for a 500 kg object resting on a horizontal surface if a massless rope with a tension of 150 N is acting at a 45 o angle to the.
SECOND LAW OF MOTION If there is a net force acting on an object, the object will have an acceleration and the object’s velocity will change. Newton's.
Chapter 4 Dynamics: Newton’s Laws of Motion. Units of Chapter 4 Force Newton’s First Law of Motion Mass Newton’s Second Law of Motion Newton’s Third Law.
Forces and Newton’s Laws of Motion. 4.1 The Concepts of Force and Mass A force is a push or a pull. Arrows are used to represent forces. The length of.
Chapter 4 Dynamics: Newton’s Laws of Motion
Chapter 4 Dynamics: Newton’s Laws of Motion. Units of Chapter 4 Force Newton’s First Law of Motion Mass Newton’s Second Law of Motion Newton’s Third Law.
Chapter 4 -Day 7 The Laws of Motion. Hi Ho Silver!! Horse A (Appaloosa)leaves from point A and travels 30mph. Horse B (Arabian) leaves point A, 2 hours.
Dynamics: Newton’s Laws of Motion. Concepts Force Newton’s First Law of Motion Mass Newton’s Second Law of Motion Newton’s Third Law of Motion Weight.
Chapter 4 Forces and Newton’s Laws of Motion. 4.1 The Concepts of Force and Mass A force is a push or a pull. Contact forces arise from physical contact.
Force & Newton’s Laws of Motion. FORCE Act of pulling or pushing Act of pulling or pushing Vector quantity that causes an acceleration when unbalanced.
Remember!!!! Force Vocabulary is due tomorrow
Dynamics: Newton’s Laws of Motion
Dynamics: Newton’s Laws of Motion
Bellwork Pick up a free-body diagram sheet and begin working on it.
QotD Make a list of what types of forces we have on Earth?
Chapter 4 The Laws of Motion. Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting.
Unit 2 1D Vectors & Newton’s Laws of Motion. A. Vectors and Scalars.
The tendency of objects to resist change in their state of motion is called inertia  Inertia is measured quantitatively by the object's mass.  Objects.
© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Basic Information: Force: A push or pull on an object Forces can cause an object to: Speed up Slow down Change direction Basically, Forces can cause an.
Copyright © 2009 Pearson Education, Inc. Chapter 4 Dynamics: Newton’s Laws of Motion.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Dynamics: Newton’s Laws of Motion. Force A force is a push or pull. An object at rest needs a force to get it moving; a moving object needs a force to.
Newton’s 3 Laws of Motion
Chapter 4 Dynamics: Aim: How can we describe Newton’s Laws of Motion? © 2014 Pearson Education, Inc.
Chapter 4 Dynamics: Newton’s Laws of Motion. Units of Chapter 4 Force Newton’s First Law of Motion Mass Newton’s Second Law of Motion Newton’s Third Law.
Forces and Newton’s Laws of Motion. A force is a push or a pull. Arrows are used to represent forces. The length of the arrow is proportional to the magnitude.
Weight = mass x acceleration due to gravity
Chapter 4 The Laws of Motion.
Physics and Forces Dynamics Newton’s Laws of Motion  Newton's laws are only valid in inertial reference frames:  This excludes rotating and accelerating.
Chapter 4 Forces and Newton’s Laws of Motion. Newtonian mechanics Describes motion and interaction of objects Applicable for speeds much slower than the.
The Laws of Motion. Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Describes.
Dynamics: Newton’s Laws of Motion
Dynamics: Newton’s Laws of Motion
Chapter 4 Dynamics: Newton’s Laws of Motion
Physics: Principles with Applications, 6th edition
Chapter 4 Newton’s Laws.
Forces and Newton’s Laws of Motion
Physics: Principles with Applications, 6th edition
Chapter 4 Dynamics: Newton’s Laws of Motion
The Laws of Motion (not including Atwood)
Dynamics: Newton’s Laws of Motion
Physics: Principles with Applications, 6th edition
Dynamics: Newton’s Laws of Motion
Presentation transcript:

Motion and Force Dynamics Chapter 4 Motion and Force Dynamics © 2006 Giancoli, PHYSICS,6/E © 2004. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey

Newtons’s Laws of Motion Giancoli, Sec 4-1 4-5 Module 8 Newtons’s Laws of Motion Giancoli, Sec 4-1 4-5 Giancoli, PHYSICS,6/E © 2004. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey

Newton’s First Law of Motion Aristotle said that force was necessary to make an object move with constant velocity. Example: Pull a box across the table. Must pull to keep it going. (Aristotle was fixated on friction) Module 8 - 1

Newton’s First Law of Motion Newton: asked what would happen if friction could be eliminated. “Every body continues in its state of rest or uniform speed in a straight line unless acted on by a nonzero net force.” Module 8 - 2

Newton’s Second Law of Motion The acceleration of an object is directly proportional to the net force acting on it and is inversely proportional to its mass. The direction of the acceleration is in the direction of the net force acting on the object Notice that mass is a measure of an object’s resistance to acceleration. We usually write the equation as Module 8 - 3

Notes on Forces Units: FORCE: newton (N) 1 N = kg · m /s2 MASS: kilogram (kg) Since this is a vector equation, it can be written in component form: Module 8 - 4

Force is in opposite direction to velocity. Example 4-1 (9) A 0.140-kg baseball traveling 35.0 m/s strikes the catchers mitt, which, in bringing the ball to rest recoils backward 11.0 cm. What was the average force applied by the glove on the ball? First find a: (to the left) Module 8 - 5 Force is in opposite direction to velocity.

Newton’s Third Law of Motion Law of Action - Reaction Whenever one object exerts a force on a second object, the second object exerts an equal and opposite force on the first. Examples: skater leans on wall wall exerts an equal but opposite force on skater Earth exerts a force on moon moon exerts equal but opposite force on earth Module 8 - 6

Newton’s Third Law of Motion Whenever one object exerts a force on a second object, the second object exerts an equal and opposite force on the first. Is important to realize that these forces act on different things and thus they don’t cancel. Module 8 - 7

Applications of Newton’s Laws Giancoli, Sec 4-6  4-7 Module 9 Applications of Newton’s Laws Giancoli, Sec 4-6  4-7 Giancoli, PHYSICS,6/E © 2004. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey

Weight Galileo told us that all objects experience an acceleration due to gravity of g and Newton gave us F = ma. We can combine these to ideas to realize that the weight of an object is the force of attraction that the earth exerts on objects and it can be written It should be noted that weight is a force and thus the proper units are newtons (N) or pounds. It is technically incorrect to say that something weights 2.0 kg because that is the mass of the object. Module 9 - 1

Application: Ropes Tension: when the man pulls on the rope, the tension in the rope transmits the force to the box. The tension is 100 N which exerts a 100 N force upward on the box and a 100 N downward force on the hand. Module 9 - 2

Steps in Solving Problems Draw free-body diagram for every object that is ”free” Select coordinate system such that one of the axis is along the direction of acceleration Write out the equations of motion for the x and y coordinate: Step 2 should guarantee that the sum of the forces in all but one direction equals zero. Solve the equations simultaneously Module 9 - 3

Application: Normal Force When a box rests on a table, the table must exert enough upward force to support the box, otherwise, the table will collapse. This upward force is called the normal force FN because it is normal to the surface. When we push down with a force of 40 N the normal force will increase by 40 N. Module 9 - 4

Free-Body Diagrams Essential part of solution Vital tool to understand problem Forces are the only vectors on free-body diagrams If there are two objects, each of them will have a free-body diagram If there are two objects, label each mass properly: m1 and m2 Select a coordinate system such that the acceleration direction is along one axis Then apply Newton’s Second Law (two equations for each object): Module 9 - 5

When acceleration is zero, the scale reads her weight: A 65-kg woman ascends in an elevator that briefly accelerates at 1.0 m/s2 upward when leaving a floor. She stands on a scale that reads in N. Example 4-2 When acceleration is zero, the scale reads her weight: Module 9 - 6

Application: Ropes and Pulleys A pulley changes the direction of the tension in the rope. If the pulley is frictionless and massless then the tension in the left rope is the same as the right Module 9 - 7

Example 4-3 Two masses hang from a massless, frictionless pulley as shown. Draw free-body diagram for each of the masses. Derive a formula for the acceleration of the masses. Assume m1 = 0.250 kg and m2 = 0.200 kg. Module 9 - 8

Example 4-3 Two masses hang from a massless, frictionless pulley as shown. Draw free-body diagram for each of the masses. Calculate the acceleration of the masses and the tension. Assume m1 =0.250 kg and m2 = 0.200 kg. Module 8 - 1

Comments on Example 4-12 in Book Treat as a single mass: Each box has the same acceleration aA = aB = 1.82 m/ s2 FT is not equal to FP FP = 40 N FT = (12 kg) ( 1.82 m/s2 ) = 22 N Module 9 - 9

Friction and Inclined Planes Giancoli, Sec 4-8 4-9 Module 10 Friction and Inclined Planes Giancoli, Sec 4-8 4-9 Giancoli, PHYSICS,6/E © 2004. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey

Kinetic Friction Friction results when two surfaces slide across each other because even the smoothest surfaces have some roughness. Kinetic Friction results when a body slides across a surface. It is proportional to the normal force between the surfaces: where k is a unit-less number called the coefficient of kinetic friction. Module 10 - 1

Static Friction If we gradually increase the applied force by adding water, the static friction force matches it until the object starts to move. Once it is sliding, the friction is kinetic and is constant. Static Friction: arises as a result of an external force even when the body is not yet moving: Module 10 - 2

Example 4-4 From the data in the graph, determine µk and µk. Just before the box starts to move Module 10 - 3

Module 10 - 4

Inclined Planes An inclined plane exerts a normal force FN which is perpendicular to the surface. There may also be a frictional force which opposes the motion. It should also be noted that the angle between the weight and the normal  is the same as the angle of the incline . Module 10 - 5

Example 4-5 A block of wood rests on a wooden board Example 4-5 A block of wood rests on a wooden board. Derive the equations of motion Module 10 - 6

At the point where it starts to slip a ≈ 0 and  = s. Example 4-5 A block of wood rests on a wooden board. One end of the board is raised until the block starts to slip. Determine the coefficient of static friction if θ = 250 when it starts to slip. At the point where it starts to slip a ≈ 0 and  = s. Module 10 - 7

Example 4- 6 One 2.80 kg paint bucket (m1) is hanging by a massless cord from a 3.50 kg paint bucket (m2), also hanging by a massless cord. If the two buckets are pulled upward with an acceleration of 0.700 m/s2 by the upper cord, calculate the tension in each cord. Module 10 - 8