What is not yet possible?

Slides:



Advertisements
Similar presentations
Design and Experimental Considerations for Multi-stage Laser Driven Particle Accelerator at 1μm Driving Wavelength Y.Y. Lin( 林元堯), A.C. Chiang (蔣安忠), Y.C.
Advertisements

Ultrafast Experiments Hao Hu The University of Tennessee Department of Physics and Astronomy, Knoxville Course: Advanced Solid State Physics II (Spring.
The scaling of LWFA in the ultra-relativistic blowout regime: Generation of Gev to TeV monoenergetic electron beams W.Lu, M.Tzoufras, F.S.Tsung, C. Joshi,
Particle acceleration in plasma By Prof. C. S. Liu Department of Physics, University of Maryland in collaboration with V. K. Tripathi, S. H. Chen, Y. Kuramitsu,
C. McGuffey a, W. Schumaker a, S. Kneip b, F. Dollar a, A. Maksimchuk a, A. G. R. Thomas a, and K. Krushelnick a (a) University of Michigan, Center for.
ELI PARAMETERS SPACE FROM ANALYTICAL MODEL C. Ronsivalle ELI meeting
Radiation Physics | ELBE | SRF Photo Injector for Electron- Laser Interaction LA 3 NET conference: Laser applications at accelerators, Mallorca,
Sub-picosecond Megavolt Electron Diffraction International Symposium on Molecular Spectroscopy June 21, 2006 Fedor Rudakov Department of Chemistry, Brown.
Ultrafast XUV Coherent Diffractive Imaging Xunyou GE, CEA Saclay Director : Hamed Merdji.
Intense Field Femtosecond Laser Interactions AMP TalkJune 2004 Ultrafast Laser Interactions with atoms, molecules, and ions Jarlath McKenna Supervisor:
2004 CLEO/IQEC, San Francisco, May Optical properties of the output of a high-gain, self-amplified free- electron laser Yuelin Li Advanced Photon.
An STM Measures I(r) Tunneling is one of the simplest quantum mechanical process A Laser STM for Molecules Tunneling has transformed surface science. Scanning.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Lecture 3: Laser Wake Field Acceleration (LWFA)
UCLA The X-ray Free-electron Laser: Exploring Matter at the angstrom- femtosecond Space and Time Scales C. Pellegrini UCLA/SLAC 2C. Pellegrini, August.
EBIT – Electron Beam Ion Trap
Simulation studies of the e-beams for Renkai Li and Juhao Wu 5/20/2014 ALD Review.
Single-shot Picosecond Temporal Resolution Transmission Electron Microscopy Renkai Li and Pietro Musumeci Department of Physics and Astronomy, UCLA FEIS.
S. Manz 1*, A. Casandruc 1, D. Zhang 1, J. Hirscht 1, S. Bayesteh 3, S. Keskin 1, J. Nicholls 4, T. Gehrke 3, F. Mayet 3, M. Hachmann 3, M. Felber 2, S.
Femtosecond low-energy electron diffraction and imaging
1 P1X: Optics, Waves and Lasers Lectures, Lasers and their Applications i) to understand what is meant by coherent and incoherent light sources;
Determination of fundamental constants using laser cooled molecular ions.
FACET and beam-driven e-/e+ collider concepts Chengkun Huang (UCLA/LANL) and members of FACET collaboration SciDAC COMPASS all hands meeting 2009 LA-UR.
Noise Suppression Experiment - ATF A. Gover, A.Nause, E. Dyunin Tel-Aviv University Fac. Of Engin., Dept. of Physical Electronics, Tel-Aviv, Israel THANKS.
1 Chapter 28: Quantum Physics Wave-Particle Duality Matter Waves The Electron Microscope The Heisenberg Uncertainty Principle Wave Functions for a Confined.
X-Rays and Materials A Vision of the Future Joachim Stöhr Stanford Synchrotron Radiation Laboratory.
Particle acceleration by circularly polarized lasers W-M Wang 1,2, Z-M Sheng 1,3, S Kawata 2, Y-T Li 1, L-M Chen 1, J Zhang 1,3 1 Institute of Physics,
High Current Electron Source for Cooling Jefferson Lab Internal MEIC Accelerator Design Review January 17, 2014 Riad Suleiman.
Magnetization dynamics
Light-induced instabilities in large magneto-optical traps G. Labeyrie, F. Michaud, G.L. Gattobigio, R. Kaiser Institut Non Linéaire de Nice, Sophia Antipolis,
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Ultrafast carrier dynamics Optical Pump - THz Probe Ultrafast carrier dynamics in Br + -bombarded semiconductors investigated by Optical Pump - THz Probe.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
O. Gorobtsov 1,2, U. Lorenz 3, N. Kabachnik 4,5, I. A. Vartanyants 1,6 Electronic damage for short high-power x-ray pulses: its effect on single-particle.
D. Filippetto, ALS user meeting, 10/7-9/13 D. Filippetto LBNL The APEX photo-gun: an high brightness MHz repetition rate source FEIS, Key West, Florida,
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Optimization of Compact X-ray Free-electron Lasers Sven Reiche May 27 th 2011.
Excited state spatial distributions in a cold strontium gas Graham Lochead.
X-RAY LIGHT SOURCE BY INVERSE COMPTON SCATTERING OF CSR FLS Mar. 6 Miho Shimada High Energy Research Accelerator Organization, KEK.
laser-cooled electron sources experiments / simulations
Compact X-ray & Emittance Measurement by Laser Compton Scattering Zhi Zhao Jan. 31, 2014.
Field enhancement coefficient  determination methods: dark current and Schottky enabled photo-emissions Wei Gai ANL CERN RF Breakdown Meeting May 6, 2010.
Ellipsoidal bunches by 2D laser shaping Bas van der Geer, Jom Luiten Eindhoven University of Technology DESY Zeuthen 30 November ) Experimental progress.
R&D opportunities for photoinjectors Renkai Li 10/12/2015 FACET-II Science Opportunities Workshops October, 2015 SLAC National Accelerator Laboratory.
Argonne National Laboratory is managed by The University of Chicago for the U.S. Department of Energy Quasi 3D ellipsoidal laser pulse by pulse tailoring.
Velocity bunching from S-band photoinjectors Julian McKenzie 1 st July 2011 Ultra Bright Electron Sources Workshop Cockcroft Institute STFC Daresbury Laboratory,
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Simulation challenges for laser-cooled electron sources Bas van der Geer Marieke de Loos Pulsar Physics The Netherlands Jom Luiten Edgar.
People Xavier Stragier Marnix van der Wiel (AccTec) Willem op ‘t Root Jom Luiten Walter van Dijk Seth Brussaard Walter Knulst (TUDelft) Fred Kiewiet Eddy.
UCLA Claudio Pellegrini UCLA Department of Physics and Astronomy X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/
Transverse Gradient Undulator and its applications to Plasma-Accelerator Based FELs Zhirong Huang (SLAC) Introduction TGU concept, theory, technology Soft.
Twin bunches at FACET-II Zhen Zhang, Zhirong Huang, Ago Marinelli … FACET-II accelerator physics workshop Oct. 12, 2015.
Accelerator Laboratory of Tsinghua University Generation, measurement and applications of high brightness electron beam Dao Xiang Apr-17, /37.
Prospects for generating high brightness and low energy spread electron beams through self-injection schemes Xinlu Xu*, Fei Li, Peicheng Yu, Wei Lu, Warren.
J.Maxson, D. Cesar, P. Musumeci UCLA
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Ultracold electron (& ion) source Edgar Vredenbregt with Merijn Reijnders, Gabriel Taban, Wouter Engelen, Nicola Debernardi, Bas van der Geer, Peter Mutsaers,
Emittance measurements for LI2FE electron beams
Electron Beam Diagnostics at REGAE
8-10 June Institut Henri Poincaré, Paris, France
Coherence & Quantum Technology
Coherence & Quantum Technology
Beyond the RF photogun Jom Luiten Seth Brussaard
SPLASH FALL ALEXANDRE GAUTHIER
Free Electron Lasers (FEL’s)
Using a Bessel Light Beam as an Ultra-short Period Helical Undulator
Emittance Partitioning between x (or y) and z dimensions
Transverse coherence and polarization measurement of 131 nm coherent femtosecond pulses from a seeded FEL J. Schwenke, E. Mansten, F. Lindau, N. Cutic,
Introduction to Free Electron Lasers Zhirong Huang
Presentation transcript:

Cool Beams for Ultrafast Electron Imaging Jom Luiten FEIS 2013 Key West, Dec 12, 2013 Department of Applied Physics

What is not yet possible? few/single shot electron diffraction of macromolecules ultrafast nano-diffraction★ ultrafast imaging with near-atomic resolution★ Higher coherence required! ★ Without throwing away electrons

Coherent electron sources conventional point-like source transverse coherence length  charge per pulse  ‘Heisenberg’ coherence noble-metal covered W(111) single-atom emitter: full spatial coherence (Chang et al., Nanotechnology 2009)

Coherent electron sources conventional point-like source transverse coherence length  charge per pulse  ‘Heisenberg’ coherence noble-metal covered W(111) single-atom emitter: full spatial coherence (Chang et al., Nanotechnology 2009)

transverse coherence length Why ultracold? conventional point-like source conventional extended source   charge per pulse   coherence transverse coherence length

transverse coherence length Why ultracold? conventional point-like source ultracold extended source   charge per pulse   coherence transverse coherence length

Ultracold electron source I N ≤ 1010 Rb atoms, R = 1 mm, n ≤ 1018 m-3 T ≈100 µK Magneto-Optical Trap (MOT)

Ultracold electron source I Electron temperature plasma effects Ultracold Plasma Killian et al., PRL 83, 4776 (1999)

Ultracold electron source Te≈ 5000 K (0.5 eV) → 10 K V Rb+ e- I conventional photo & field emission sources Claessens et al., PRL 95, 164801 (2005) Taban et al., EPL 91, 46004 (2010) Ultracold beams!

Ultracold electron source Te≈ 5000 K (0.5 eV) → 10 K V Rb+ e- I conventional photo & field emission sources Claessens et al., PRL 95, 164801 (2005) Taban et al., EPL 91, 46004 (2010) Ultracold beams!

The cold electron (and ion) source Claessens et al., PRL 95, 164801 (2005) Claessens et al., Phys. Plasmas 14, 093101 2007 Taban et al., PRSTAB 11, 050102 (2008) Reijnders et al., PRL 102, 034802 (2009) Taban et al., EPL91, 46004 (2010) Reijnders et al., PRL 105, 034802, (2010) Reijnders et al. JAP 109, 033302 (2011) Debernardi et al., JAP 110, 024501 (2011) Vredenbregt & Luiten, Nature Phys. 7, 747 (2011) Debernardi et al., New J. Phys 14 083011 (2012) Engelen et al., Nature Commun. 4, 1693 (2013) Engelen et al. Ultramicroscopy 136, 73 (2014) Engelen et al., New. J. Phys. 15, 123015 (2013)

The cold electron source Atom trap inside coaxial accelerator electrons - +

Femtosecond ionization: solenoid waist scan 1 2 1 2 3 3

Femtosecond ionization: solenoid waist scan 1 2 3 normalized emittance:

Femtosecond ionization: solenoid waist scan 1 2 3 normalized emittance:

Femtosecond ionization: solenoid waist scan 1 2 3 normalized brightness:

Temperature vs. Excess Energy tion = 100 fs U = 2.8 keV Q = 0.2 fC Engelen et al., Nat. Commun. (2013) T ≈ 20 K

Temperature vs. Excess Energy tion = 100 fs U = 2.8 keV Q = 0.2 fC ? Engelen et al., Nature Comm. (2013) Expected: σλ = 4 nm → Tsource ≥ 200 K

Dynamics ionization process Potential energy landscape

Dynamics ionization process Schottky effect Excess energy

Electron trajectories → source ‘temperature’

Analytical Temperature Model Potential Energy T (K) Eexc (meV) σθ  T Electrons escape mostly in forward direction Bordas et al., Phys. Rev. A 58, 400 (1998)

Comparison with Model Laser profile Engelen et al., Nature Comm. (2013) Analytical model explains femtosecond data; few 10 K electron source with fs laser!

Dependence of T on Polarization ns laser,  = 484 nm fs laser,  = 481 nm Very low T… Engelen et al., New J. Phys. (2013)

First diffraction pattern: graphite Electron energy: 9.3 keV Graphite crystal on 200 TEM grid

Diffraction pattern graphite 200 µm 30 µm Van Mourik et al., to be published Electron energy: 13.2 keV

Diffraction pattern graphite 9 µm Van Mourik et al., to be published Electron energy: 10.8 keV

Diffraction pattern graphite 3 µm Van Mourik et al., to be published Electron energy: 10.8 keV

Diffraction spot size vs. temperature Visibility diffraction pattern tunable with T (with λ and F) behaviour as expected: GPT – no fitting parameters Van Mourik et al., to be published

Coherence length vs. temperature Coherence length directly from diffraction pattern behaviour as expected – no fitting parameters Van Mourik et al., to be published

Implications… 30 µm 3 µm Source size 30 µm → spot size on sample 3 µm…

…ultrafast nano-diffraction with 1 nm coherence length→ Implications… 1 µm 0.1 µm Source size 1 µm → spot size on sample 100 nm… …ultrafast nano-diffraction with 1 nm coherence length→

Implications… Source size 30 µm & spot size on sample 50 µm… … >105 electrons per pulse with 10 nm coherence length → few (single?) shot UED of macromolecules

Summary ultracold & ultrafast electron source: T ≈ 20 K & τ = few ps temperature tunable with laser wavelength and polarization detailed understanding photoionization process first diffraction patterns confirm source properties ultrafast nano-diffraction possible UED of macromolecules possible

Acknowledgment Edgar Vredenbregt – coPI Bert Claessens – PhD 2007 Gabriel Taban – PhD 2009 Merijn Reijnders – PhD 2010 Thijs van Oudheusden – PhD 2010 Nicola Debernardi – PhD 2012 Adam Lassise – PhD 2012 Wouter Engelen – PhD 2013 Peter Pasmans – PhD Stefano Dal Conte – postdoc Daniel Bakker, Martin van Mourik – MSc 2013 Many other BSc and MSc students Bas van der Geer, Marieke de Loos – Pulsar Physics Edgar Vredenbregt – coPI Technical support: Louis van Moll Jolanda van de Ven Eddie Rietman Iman Koole Ad & Wim Kemper Harry van Doorn

Spot size on sample vs. temperature

>105 electrons per pulse with 1 nmrad normalized emittance Phase space density >105 electrons per pulse with 1 nmrad normalized emittance → coherent fluence ≥ 10-3 → degeneracy ≥ 10-5 Coherent fluence Degeneracy T << 1 K possible??