THE PERIODIC SYSTEM Pekka PYYKKÖ (University of Helsinki, Finland) Winter School in Theoretical Chemistry, December 2009.

Slides:



Advertisements
Similar presentations
Created by C. Ippolito Nov The Periodic Table The Periodic Table Objectives: 1. describe the origin of the periodic table 2. state the periodic.
Advertisements

Electron Configuration and Periodicity
The Periodic Table. Periodic Table Dmitri Mendeleev ( ) "We could live at the present day without a Plato, but a double number of Newtons is required.
3.3 The Periodic Table and the Elements
Ch 5.3 Electron Configuration and Periodic Properties
Chapter 5 Review Play slide show. Correct answer appears in blue.
Chapter 6 Periodic Table Periodic Table. History A. John Newlands 1. Law of octaves 2. Properties repeat every 8 elements when arranged by atomic mass.
Periodic Relationships Among the Elements
Periodic Table 4 th Lykeion of Corfu Class A. Dobereiner ades of elements with similar properties Cl, Br,I Ca,Sr,Ba etc.
Chapter 6 Periodic Trends
Unit 6 – The Periodic Table
RELATIVISTIC QUANTUM CHEMISTRY: FROM THE YELLOW COLOUR OF GOLD TO THE LEAD BATTERY Pekka PYYKKÖ (Department of Chemistry, University of Helsinki, Finland)
Anything in black letters = write it in your notes (‘knowts’)
Chapter 5 The Periodic Law
The Development of the Periodic Table
The Periodic Table Ch 6.
Periodic Table.1. The Periodic Table-Key Questions What is the periodic table ? What information does the table provide ? ? How can one use the periodic.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Electromagnetic Radiation Radiant energy that exhibits wavelength-like behavior and.
:37 PM1 3.3 Periodic Table ENTRY QUIZ :37 PM2 3.3 Periodic Table FOURTH ELEMENT BERYLLIUM Be Atomic number 4 Atomic weight Synthesized.
Turn to page 3 in the Unit Note Packet. History of the Periodic Table In the mid-1800’s, Dimitri Mendeleev published a table of all of the known elements,
The Periodic Table. ( very ) Brief History 1869 Mendeleev* & Meyer published similar tables * First to be recognized at international convention – Elements.
Chapter 5 The Periodic Law
Breakthroughs in Organizing Elements Odling: elements can be organized into 13 groups based on physical & chemical properties Pretty close to modern groups.
Chapter 5 : The Periodic Table. Objectives Be able to define and explain each periodic trend, including comparing two different elements. For example:
Chapter 6 The Periodic Law
Ch. 14: Chemical Periodicity Standard: Matter consists of atoms that have internal structures that dictate their chemical and physical behavior. Targets:
The Periodic Table History of the Periodic Table 1) Doberiner - Doberiner’s triads Grouped together elements in groups of 3’s with similar chemical properties.
The Periodic Table and the Elements. What is the periodic table ? What information is obtained from the table ? How can elemental properties be predicted.
Modern Periodic Table Chapter 5. Dimitri Mendeleev Predicted the existence and properties of elements that had not yet been discovered-this demonstrated.
Early periodic tables Dobereiner - early 1800s Triads- elements with similar properties Cl, Br, I Ca, Sr, Ba Newlands known elements Law of Octaves.
Periodic Table Physical Properties Students will understand the development of the periodic table as a function of properties of the elements.
Periodic Properties of Elements SANTOSH CHEMISTRY DEPT.
Periodic Trends. What do these random squiggles have in common?
The Periodic Table History Structure Trends. Part I: Attempts at Classification.
WRAP UP List the name and atomic number of the first 18 elements, in order (without your notes, if possible).
A CLOSER LOOK AT THE ELEMENTS
The History of the Modern Periodic Table
The History of the Modern Periodic Table
1.7 Trends in the Periodic Table
KS4 Chemistry Metallic Bonding.
A Chemist’s Most Important Tool
A CLOSER LOOK AT THE ELEMENTS
History of Periodic Table and Periodicity
KS4 Chemistry The Periodic Table.
3.3 The Periodic Table and the Elements
Groups of Elements 1A 8A H He 2A 3A 4A 5A 6A 7A Li Be B C N O F Ne Na
KS4 Chemistry Metallic Bonding.
5-1 R&R (Front) 6. Patterns of properties repeated every 8 elements
The Periodic Table Chapter 6 The Periodic Table
3.3 The Periodic Table and the Elements
Chapter 6: The Periodic Table
AQA GCSE Atomic structure and periodic table part 2
3.3 The Periodic Table and the Elements
1.1 Atoms, Elements and the Periodic Table
“Building up” the atoms in the periodic table
Development of the Periodic Table
Chapter 6 The Periodic Table and Periodic Law.
Periodic Table – Organizing the Elements
The Evolution of Atomic Theory
3.3 The Periodic Table and the Elements
III. Periodic Trends (p )
:37 PM1 3.3 Periodic Table 3.3 The Periodic Table and the Elements Dr. Fred Omega Garces Chemistry 100 Miramar College.
Edexcel Topic 1: Key concepts in chemistry
The Periodic Table Part I – Categories of Elements
Topic 3 - Periodicity 3.1 – Periodic Table .1.
Periodic Table – Organizing the Elements
III. Periodic Trends (p )
The Periodic Table S Investigate the development of the periodic table as a method of organizing elements. Include: periods, families (groups)
Presentation transcript:

THE PERIODIC SYSTEM Pekka PYYKKÖ (University of Helsinki, Finland) Winter School in Theoretical Chemistry, December 2009

WHAT IS IT?

SOME RECENT REVIEWS AND HISTORIES E. R. Scerri, The Periodic Table, Oxford U. P. (2007), 346 p. History aspects well told. Perhaps overemphasises the ”window aspect”, the ”correct form of the PT” and the Madelung n+l rule. S-G. Wang and W. H. E. Schwarz, Angew. Chem. Int. Ed. 48 (2009)

WHO DISCOVERED IT? Bits and pieces early on. Based on atomic weights. No ’Z’! Döbereiner’s triads (Ca, Sr, Ba) 1817, (Li, Na, K), (S, Se, Te), (Cl, Br, I) Gmelin 1843, 55 elements, oxygen to right group, chemical properties. Pettenkofer 1850, Dumas 1851, Kremers 1852, Lenssen Karlsruhe conference a 150-Year celebration. de Chancourtois 1862 ’vis tellurique’, Newlands 1863, 1865 ’octaves’, Meyer elements, square table with gaps, Odling 1864, Hinrichs 1867, Naquet D. I. Mendeleev 1869-: Predicts (Sc) 45, (Ga) 68, (Ge) 70. Ga discovered 1875, Sc 1879, Ge Royal Society Davy medal to Mendeleev and Meyer Ramsay: (He, Ne, Ar) form a new group (now ’Group 18’). Seaborg 1945: Introduces the actinide row. So far, the 6d elements boringly similar to their 5d analogues.

WHAT DRIVES IT? N = ’Period’ H-like AufbauReal Aufbau nShells∆ZNShells∆Z 11s s, 2p s, 3p, 3d1833s, 3p8 44s, 4p, 4d, 4f324[4s, 3d], 4p18 55s, 5p, 5d, 5f, 5g505[5s, 4d], 5p18 66s-6h726[6s, 5d, 4f], 6p32 77s-7i987[7s, 6d, 5f], 7p32

SAME IN TERMS OF ENERGY LEVELS

Albert Einstein’s special relativity coupled to Dmitrii Mendeleyev’s Periodic System ! :

Some personal long-term activities

5th-Row versus 6th-Row Compounds

FURTHER EXPERIMENTAL FACTS Mercury is a liquid and has, as crystal, a rhombohedral ’α-Hg’ structure. Cadmium melts at K and has a distorted hexagonal structure.. Cars start.

5th-Row versus 6th-Row Compounds

RELATIVISTIC EFFECTS ”Relativistic effects”: Anything depending on the speed of light. Alternatively: The difference between using a Dirac or a Schrödinger one-electron equation. Alternatively: Letting c increase from au to a very big value. Explain many chemical differences between 5th-Row and 6-th Row elements. Ag/Au. Current textbook explanation, together with the lanthanide contraction. New: Deeper physics (QED effects) will only change the previous conclusions by -1% for heavy elements. The QED was the last train from physics to chemistry.

WHY RELATIVITY? The innermost electrons move fast in heavy elements. The average radial 1s velocity in atomic units (c = au), 1s = Z = 80 for Hg. (1) This leads to a mass increase, m = m 0 /[1 – (v/c) 2 ] 1/2. (2) The increased mass gives a smaller Bohr radius, a 0 = ћ 2 / m e 2. (3) → a relativistic contraction and stabilization of all s and p orbitals. Exact solution of the Dirac equation: The higher s and p states are also strongly ’relativistic’. Due to stronger screening of the nuclear attraction by s and p shells, the d and f shells will have a relativistic expansion and destabilization. For valence shells, effects increase as Z 2.

HYDROGEN-LIKE ATOM Hg 79+ V. M. Burke, I. P. Grant, Proc. Phys. Soc. (London) 90 (1967) 297.

THE ”GOLD MAXIMUM” OF RELATIVISTIC EFFECTS P. Pyykkö, J. P. Desclaux, Acc. Chem. Res. 12 (1979) 276.

Data from J. P. Desclaux, P. Pyykkö, Chem. Phys. Lett. 39 (1976) 300.

Relativity and the Periodic System P. Pyykkö, Chem. Rev. 88 (1988)

CHEMISTRY TEXTBOOKS G. Wulfsberg (1989, 1991). F. A. Cotton, G. Wilkinson (1988, 1999). K. M. Mackay, R. A. Mackay (1989, 1996). R. H. Petrucci (1989) + W. S. Harwood (1993). A. G. Massey (1990). W. L. Jolly (1991). A. G. Sharpe (1992). J. E. Huheey, E. A. Keiter, R. L. Keiter (1993). J. B. Umland (1993) (+ J. M. Bellama !996)). T. M. Klapötke, I.C. Tornieporth-Oetting (1994). N. C. Norman (1994, 1997). School text. ’Hollemann-Wiberg’, 101. Auflage (1995), 102. (2007) S. S. Zumdahl, (1995, 1998).

CHEMISTRY TEXTBOOKS (continued) N. N. Greenwood, A. Earnshaw, 2nd Ed. (1997). D.M.P. Mingos (1998). N. Kaltsoyannis, P. Scott (1999). G. Rayner-Canham, 2nd Ed. (1999). C. E. Housecroft, A.G. Sharpe (2001). J. Barrett (2002). Three fronts: Chemistry, Physics, Mathematics.

SEVEN RULES THAT EXPLAIN THE PERIODIC SYSTEM 1. Main vertical rule. First shell with every l (1s, 2p, 3d, 4f) is anomalously small. increases with n for others. 2. Main horisontal trend: decreases with Z. 3. Main periodicity: Filled shells stable. NR half-filled ones also. 4. Partial screening effects. Lanthanide contraction due to filling the 4f shell on 6s and 6p shells. Analogous 3d, 2p and 1s effects. 5. Relativistic contraction and stabilization. (s, p). 6. Relativistic expansion and destabilization. (d, f). 7. Spin-orbit splitting. (p, d, f shells).

RELATIVISTIC BOND-LENGTH CONTRACTION P. Pyykkö, J. P. Desclaux, Chem. Phys. Lett. 42 (1976) 545. Contraction increases as Z 2. First found for PbH 4 (1974).

BOND-LENGTH CONTRACTION NOT DUE TO ORBITAL CONTRACTION Consider as example the isoelectronic CsH or BaH + molecules. One valence σ MO: |σ> = c 1 |6s> + c 2 |5d> + c 3 |1s H > + c 4 |core>. (1) ΔE (1) = (2) = ΔE (1) (core-core) + ΔE (1) (core-val) + ΔE (1) (val-val). The core-core term (<0) becomes larger with decreasing bond length, R. It provides a driving force for the contraction, already with the NR, uncontracted orbitals. P. Pyykkö, J. G. Snijders, E. J. Baerends, CPL 83 (1981) 432.

Au(I) versus Au(III) AuX 4 - → AuX 2 – +2X P. Schwerdtfeger, J. Am. Chem. Soc. 111 (1989) X ΔU/kJ mol -1 NRR F Cl Br I

MOLYBDENUM AND TUNGSTEN P. Pyykkö, J. P. Desclaux, Chem. Phys. 34 (1978) 261.

ZIRCONIUM AND HAFNIUM P. Pyykkö, J. P. Desclaux, Chem. Phys. Lett. 50 (1977) 503.

TIN, LEAD AND RELATIVITY P. Pyykkö, Chem. Rev. 88 (1988) 563.

THE RELATIVISTIC COLOURS BiPh 5, violet: LUMO shift down. PbCl 6 2-, yellow: LUMO shift down. Metallic gold: 5d band shifts up, 6s Fermi level shifts down. Pb(NO 2 ) 2, yellow. Singlet-triplet mixing of the nitrite, due to spin-orbit coupling of the heavy metal.

TRENDS AMONG ALKALI METALS 1. B. Fricke, J. T. Waber, J. Chem. Phys. 56 (1972) 3246.

TRENDS AMONG ALKALI METALS 1. P. Pyykkö, Int. J. Quantum Chem. 85 (2001) 18.

’RIPPLES ON PERIODICITY’: FINE STRUCTURE Secondary periodicity (Biron 1915). Lanthanide contraction (Goldschmidt 1925). Spin-orbit subshells and Bi(I). Alkali metals, the beginning. ’Honorary d-metals’: Cs, Ca-Ba. Au as ’halogen’, Pt as ’oxygen’, Ir as ’nitrogen’.

SECONDARY PERIODICITY

UNDERSTANDING SECONDARY PERIODICITY P. Pyykkö, J. Chem.Res. (S) (1979) 380.

THE LANTHANIDE CONTRACTION Skrifter Norske Vid. Ak., I. Mat. Naturvid. Klasse, No. 7 (1925).

THE LANTHANIDE CONTRACTION Skrifter Norske Vid. Ak., I. Mat. Naturvid. Klasse, No. 7 (1925).

THE LANTHANIDE CONTRACTION Skrifter Norske Vid. Ak., I. Mat. Naturvid. Klasse, No. 7 (1925).

SPIN-ORBIT SUBSHELLS AND Bi(I) Bi(I) exists in Bi + (Bi 9 5+ )(HfCl 6 2- ) 3. R.M. Friedman, J.D. Corbett, Chem. Comm. (1971) 422; Inorg. Chem. 12 (1973) 1134.

Cs, Ca-Ba AS ’HONORARY d ELEMENTS’ L. Gagliardi, P. Pyykkö, Theor. Chem. Acc. 110 (2003) 210; earlier work since L. Gagliardi, J. Am. Chem. Soc. 124 (2002) 8757: Predicts CsN≡Ba. A. Janczyk &, J. Am. Chem. Soc. 128 (2006) 1109: Make HN≡Ba.

PLATINUM AS OXYGEN: HOW DOES IT WORK? 1. M. Patzschke, P. Pyykkö, Chem. Comm. (2004) 1982.

METALLOACTINYLS: PLATINUM AS ’OXYGEN’ 1. L. Gagliardi, P. Pyykkö, Angew. Chem. Int. Ed. 43 (2004) M. Santos, J. Marçalo, A. Pires de Matos, J.K. Gibson, R.G. Haire, Eur. J. Inorg. Chem. (2006) Make OUIr +. OUIr + prepared [2] !

END OF ’PERIODIC SYSTEM’ TALK