Physics 203 College Physics I Fall 2012

Slides:



Advertisements
Similar presentations
Lecture 15 Rotational Dynamics.
Advertisements

Chapter 11 Angular Momentum
Chapter 9 Rotational Dynamics.
Ch 9. Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation.
Physics 111: Lecture 19, Pg 1 Physics 111: Lecture 19 Today’s Agenda l Review l Many body dynamics l Weight and massive pulley l Rolling and sliding examples.
Lecture 15 Rotational Dynamics.
A 40-kg mass placed 1.25 m on the opposite side of the support point balances a mass of 25 kg, placed (x) m from the support point of a uniform beam. What.
Lecture 37, Page 1 Physics 2211 Spring 2005 © 2005 Dr. Bill Holm Physics 2211: Lecture 37 l Work and Kinetic Energy l Rotational Dynamics Examples çAtwood’s.
Physics 101: Lecture 15, Pg 1 Physics 101: Lecture 15 Rolling Objects l Today’s lecture will cover Textbook Chapter Exam III.
Physics 111: Mechanics Lecture 10 Dale Gary NJIT Physics Department.
Physics 201: Lecture 18, Pg 1 Lecture 18 Goals: Define and analyze torque Introduce the cross product Relate rotational dynamics to torque Discuss work.
Torque and Angular Momentum
Chapter 11: Rolling Motion, Torque and Angular Momentum
Chapter 9 Rotational Dynamics.
Rotational Motion – Part II
Rotational Kinematics
Physics 207: Lecture 17, Pg 1 Lecture 17 Goals: Chapter 12 Chapter 12  Define center of mass  Analyze rolling motion  Introduce and analyze torque 
Chapter 8 Rotational Equilibrium and Rotational Dynamics.
Physics 2211: Lecture 38 Rolling Motion
Physics 218 Lecture 18 Dr. David Toback Physics 218, Lecture XVIII.
Chapter Eight Rotational Dynamics Rotational Dynamics.
Chapter 11 Rotational Dynamics and Static Equilibrium
Physics 218, Lecture XX1 Physics 218 Lecture 20 Dr. David Toback.
Chapter 10 Rotation Key contents
Chapter 8 Rotational Equilibrium and Rotational Dynamics.
Classical Mechanics Review 4: Units 1-19
PHY1012F ROTATION II Gregor Leigh
Rotation and angular momentum
Angular Momentum of a Particle
Chapter 11 Angular Momentum.
Chapter 8: Torque and Angular Momentum
CHAPTER 11 : ROLLING MOTION AND ANGULAR MOMENTUM
Chapters 10, 11 Rotation and angular momentum. Rotation of a rigid body We consider rotational motion of a rigid body about a fixed axis Rigid body rotates.
Lecture Outline Chapter 8 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Rotational Dynamics Just as the description of rotary motion is analogous to translational motion, the causes of angular motion are analogous to the causes.
Monday, June 25, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #14 Monday, June 25, 2007 Dr. Jaehoon Yu Torque Vector.
Chapter 10 - Rotation Definitions: –Angular Displacement –Angular Speed and Velocity –Angular Acceleration –Relation to linear quantities Rolling Motion.
Torque Chap 8 Units: m N 2.
Physics 201: Lecture 19, Pg 1 Lecture 19 Goals: Specify rolling motion (center of mass velocity to angular velocity Compare kinetic and rotational energies.
1 7/26/04 Midterm 2 – Next Friday (7/30/04)  Material from Chapters 7-12 I will post a practice exam on Monday Announcements.
Physics 203 – College Physics I Department of Physics – The Citadel Physics 203 College Physics I Fall 2012 S. A. Yost Chapter 8 Part 3 Chapter 9 Angular.
Chapter 10 Rotation.
Chapter 8 Rotational Motion.
Physics 207: Lecture 14, Pg 1 Physics 207, Lecture 14, Oct. 23 Agenda: Chapter 10, Finish, Chapter 11, Just Start Assignment: For Wednesday reread Chapter.
Physics 1501: Lecture 22, Pg 1 Physics 1501: Lecture 22 Today’s Agenda l Announcements çHW#8: due Oct. 28 l Honors’ students çsee me Wednesday at 2:30.
Wednesday, Apr. 15, 2009PHYS , Spring 2009 Dr. Jaehoon Yu PHYS 1441 – Section 002 Lecture #19 Wednesday, Apr. 15, 2009 Dr. Jaehoon Yu Relationship.
Rotational Kinetic Energy An object rotating about some axis with an angular speed, , has rotational kinetic energy even though it may not have.
Physics 203 – College Physics I Department of Physics – The Citadel Physics 203 College Physics I Fall 2012 S. A. Yost Chapter 8 Part 1 Rotational Motion.
Torque. So far we have analyzed translational motion in terms of its angular quantities. But we have really only focused on the kinematics and energy.
Rotational Dynamics and Static Equilibrium
ROTATIONAL MOTION Y. Edi Gunanto.
Chapter 9 Rotational Dynamics.
Rotational Motion About a Fixed Axis
Thursday, Oct. 30, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #19 Thursday, Oct. 30, 2014 Dr. Jaehoon Yu Rolling Kinetic.
Exam is Wednesday at 7:00 pm Remember extra office hours
Tuesday, June 26, 2007PHYS , Summer 2006 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #15 Tuesday, June 26, 2007 Dr. Jaehoon Yu Rotational.
Chapter 11 Angular Momentum. The Vector Product and Torque The torque vector lies in a direction perpendicular to the plane formed by the position vector.
Physics 207: Lecture 15, Pg 1 Physics 207, Lecture 15, Oct. 25 Agenda: Chapter 11, Finish, Chapter 12, Just Start Assignment: For Monday read Chapter.
Angular Displacement, Velocity, and Acceleration Rotational Energy Moment of Inertia Torque Work, Power and Energy in Rotational Motion.
Physics 207: Lecture 17, Pg 1 Lecture 17 (Catch up) Goals: Chapter 12 Chapter 12  Introduce and analyze torque  Understand the equilibrium dynamics of.
Rotational Equilibrium and Rotational Dynamics
Monday, Apr. 27, 2009PHYS , Spring 2009 Dr. Jaehoon Yu PHYS 1441 – Section 002 Lecture #20 Monday, Apr. 27, 2009 Dr. Jaehoon Yu Torque and Angular.
Short Version : 10. Rotational Motion Angular Velocity & Acceleration (Instantaneous) angular velocity Average angular velocity  = angular displacement.
Lecture 18: Angular Acceleration & Angular Momentum.
Chapt. 10: Angular Momentum
Chapter 10 Lecture 18: Rotation of a Rigid Object about a Fixed Axis: II.
Rotational Dynamics The Action of Forces and Torques on Rigid Objects
Rotational Dynamics.
Phys211C10 p1 Dynamics of Rotational Motion Torque: the rotational analogue of force Torque = force x moment arm  = Fl moment arm = perpendicular distance.
Lecture 17 Goals: Chapter 12
Presentation transcript:

Physics 203 College Physics I Fall 2012 S. A. Yost Chapter 8 Part 2 Rotational Motion

Announcements Problem set HW08 is due Thursday. It covers Chapter 8 except angular momentum, rolling, and some torque problems. Today: Rotational Motion, Ch. 10 , mostly sec7 – 8. Thursday: chapter 9, sec. 1, 2, and 4 . Please read these sections before class. A problem set HW09 on them and the remainder of Ch. 8 will be posted today and due next Tuesday. Deadline for making up Exam 2: Wed. 5 PM.

Rotational Analogs of Linear Motion Linear Motion Rotational Motion Kinematics: x , v, a q, w, a Dynamics: m, F, Kt I, t, Kr F = ma t = Ia Kt = ½ mv 2 Kr = ½ Iw 2 W = Fx W = t q P = F v P = tw

Torque t = R F^ = R F sin q . The torque is defined to be the perpendicular component of the force times the distance from the pivot to where it acts: F F^ R q t = R F^ where F^ = F sin q. Counter-clockwise torque is considered to be positive, as for angles. Then = R F sin q .

Torque t = R ^ F t = R F^ = R F sin q The torque can also be expressed in terms of the magnitude of the force and the distance from the axis to the line of the force. The distance R ^ is called the lever arm of the torque. F R q R^ t = R ^ F t = R F^ = R F sin q

Tightening a Nut with a Wrench Which use of the wrench is most effective for tightening the nut? Which is least effective? Which of A and D is more effective? Choose E if they are the same. A B C D The lever arms are the same.

Question A force is applied to the rim of two wheels. Assuming the only significant mass is in the rim, what force F2 will give the wheels identical angular accelerations? (A) 0.25 N (B) 0.5 N (C) 1.0 N (D) 2.0 N (E) 4.0 N I = mR2

Question t = RF = I a = mR2 a. = = → = F2 = 2 F1 = 2 N. t2 R2F2 mR22 a F2 R2 t1 R1F1 mR12 a F1 R1 I = mR2

Example a Mass falling on rope wrapped around a massive pulley. R Assume the pulley is a uniform disk as shown. What is the acceleration of the hanging mass? R M a

Example FT a mg Isolate the hanging mass: Newton’s Law: M a = Fnet = Mg – FT where FT is the tension in the rope. FT M a mg

Example m Isolate the pulley: t = I a with I = ½ m R2, t = RFT , a = a/R. Then RFT = (½ mR2)(a/R). Therefore, FT = ½ ma. R a FT

Example FT M a Combine results: R M a = Fnet = Mg – FT = Mg – ½ ma. Then (M + m/2) a = Mg. Result: a = R FT M 1 + m/2M g a

Example F2 Note that the tension does not need to be the same on two sides of a massive pulley. Net torque = R(F1 – F2) = Ia. a m R R F1

Rigid Body Motion The relation t = I a holds for rigid body rotation in any inertial frame. This always holds in the CM frame of the rigid body, even if it is accelerating. The energy of a rigid body can be expressed as a sum K = K cm + K rot with K cm = ½ mvcm2, K rot = ½ Iw 2. “Newton’s Law” F = m acm (ch. 7), t = I a.

Dumbbell m → → F A force F is applied for time t to a dumbbell in one of two ways shown. Which gives the greater speed to the center of mass? (a) A (b) B (c) the same A m → F → → Dp = Ft B

Dumbbell m → → F A force F is applied for time t to a dumbbell in one of two ways shown. Which gives the greater energy to the dumbbell? (a) A (b) B (c) the same A m → F B

Dumbbell F F The total kinetic energy is Case A: → F The total kinetic energy is Case A: K = Ktrans + Krot = ½ mvcm2 + ½ Iw2 Case B: no rotation: K = ½ mvcm2 There is more energy in case A. A m → F B

Rolling When an object rolls, its circumference moves a distance 2pr every period, so w and v are related: v = 2pr/T = rw 2pr 2pr 2pr 2pr

Rolling A solid wheel and a hollow wheel roll down a ramp, starting from rest at the same point. Which gets to the bottom faster?

Rolling If an object with mass m and moment of inertia I rolls down an inclined plane of height h and length L, how fast is it rolling when it gets to the bottom? m,I h L

√ Rolling v = Energy conservation: Ui = Ktrans + Krot mgh = ½ mv2 + ½ Iw2. Rolling: w = v/R. mgh = ½ (m + I/R2) v2. √ h L m,I v = 2gh 1 + I/(mR2)

Rolling The solid wheel gets to the bottom first, because the object with the smaller moment of inertia relative to its mass and size moves faster.

Rotational Analog of Momentum Linear Motion: (one dimension) Momentum: p = mv Impulse: Dp = Ft Rotational Motion: (fixed axis) Angular momentum: L = Iw DL = t t

Angular Momentum Units of angular momentum: L = I w = [kg m2][s-1] = kg . m2/s DL = t t = [mN][s] = Nms = J.s When there is no external torque on a system, angular momentum is conserved. In particular, this applies to collisions between rigid bodies.

Figure Skater A figure skater increases her rotational rate from 1.0 rev/s to 2.5 rev/s in 1.5 s. Her initial moment of inertia was 4.6 kg ∙ m2. (a) What was her final moment of inertia?

Figure Skater A figure skater increases her rotational rate from 1.0 rev/s to 2.5 rev/s in 1.5 s. Her initial moment of inertia was 4.6 kg ∙ m2. I1w1 = I2 w2 w2 = 2.5 w1 I2 = I1 / 2.5 = 1.84 kg ∙ m2 ≈ 1.8 kg ∙ m2

Figure Skater A figure skater increases her rotational rate from 1.0 rev/s to 2.5 rev/s in 1.5 s. Her initial moment of inertia was 4.6 kg ∙ m2. (b) What average power did she apply to pull in her arms?

Figure Skater P = W/t, W = DK = ½ Iw22 – ½ Iw12. w1 = 1.0 rev/s (2p rad/rev) = 2.0 p rad/s w2 = 2.5 rev/s (2p rad/rev) = 5.0 p rad/s I1 = 4.6 kg ∙ m2, I 2 = 1.84 kg ∙ m2 W = 277 J – 90.8 J ≈ 186 J, t = 1.5 s. P = 124 W.

Analog of Inelastic Collision A bar of length 2R is dropped onto a rotating disk of radius R. Suppose M = 2m. If the disk initially rotates at 120 rpm, how fast does it rotate if the stick drops onto it and rotates together with the disk? 2R m M R w0

Analog of Inelastic Collision Angular momentum is conserved: I1w1 = I2 w2 . I1 =½ MR2 = mR2 and I2 = Ibar + Idisk with Ibar = mL2/12 = mR2/3, Idisk = ½ MR2 = mR2 I2 = 4mR2/3 w2= ( I1 / I2) w1 = ¾ w1 = ¾ (120 rpm) = 90 rpm. m R wf M

Angular Quantities as Vectors If the axis is not fixed, we have to specify a direction for angular displacements and velocities. The convention use a vector pointing along the axis. For fixed axis rotations, the vectors q and w are parallel, but they won’t be if the axis direction changes. → q → → w = d q /dt w → q → → w Right-Hand Rule