6-7 Problem Solving Using Conservation of Mechanical Energy

Slides:



Advertisements
Similar presentations
Physics: Principles with Applications, 6th edition
Advertisements

Solving Problems with Energy Conservation, continued.
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 6: Conservation of Energy Work.
Conservation of Energy
今日課程內容 CH7: 功與能 外力做功 動能 功能定理 CH8: 能量守恆 保守力 位能 機械能與機械能守恆 能量守恆定律.
Work, Energy, And Power m Honors Physics Lecture Notes.
Chapter 9:Linear Momentum 9-1 Momentum and Its Relation to Force 9-2 Conservation of Momentum 9-3 Collisions and Impulse 9-4 Conservation of Energy and.
Work and Energy.
Conservation of Energy Energy is Conserved!. The total energy (in all forms) in a “closed” system remains constant The total energy (in all forms) in.
Chapter 9:Linear Momentum 8-4 Problem Solving Using Conservation of Mechanical Energy 8-5 The Law of Conservation of Energy 8-6 Energy conservation with.
Energy.
Chapter 6 Work & Energy.
Chapter 6 Work and Energy.
Chapter 6 Work and Energy
Chapter 8 Conservation of Energy 8.2 Gravitational Potential Energy 8-3 Mechanical Energy and Its Conservation 8-4 Problem Solving Using Conservation of.
WORK In order for work to be done, three things are necessary:
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
WORK In order for work to be done, three things are necessary:
Work and Energy. Work Done by a Constant Force.
Conservation of Energy
Conservation of Energy
Problem Solving Using Conservation of Mechanical Energy
Chapter 6 Work and Energy.
Potential Energy and Conservative Forces
Chapter 5 Work and Energy. 6-1 Work Done by a Constant Force The work done by a constant force is defined as the distance moved multiplied by the component.
Mechanics Work and Energy Chapter 6 Work  What is “work”?  Work is done when a force moves an object some distance  The force (or a component of the.
Energy m m Physics 2053 Lecture Notes Energy.
Chapter 8 - Potential Energy and Conservation of Energy Conservative vs. Non-conservative Forces Definition of Potential Energy Conservation Of Mechanical.
Work IN, Work OUT The Work/Energy Principle. Kinetic Energy KE depends on mass and velocity Work done on an object will change KE.
Physics 203 College Physics I Fall 2012
Thursday, June 26, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #13 Thursday, June 26, 2014 Dr. Jaehoon Yu Potential.
1 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli Piri Reis University / Physics -I.
Sect. 8-7: Gravitational Potential Energy & Escape Velocity.
Chapter 6 Work and Energy. Units of Chapter 6 Work Done by a Constant Force Kinetic Energy, and the Work-Energy Principle Potential Energy Conservative.
Work and Energy.
Work and Energy. Work Done by a Constant Force The work done by a constant force is defined as the distance moved multiplied by the component of the force.
NAZARIN B. NORDIN What you will learn: Define work, power and energy Potential energy Kinetic energy Work-energy principle Conservation.
Work and Energy.
Conservation of Energy. Conservative Force One for which work done does not depend on the path taken only on initial and final positions Gravity and elastic.
Conservation of Energy
Ch. 6, Work & Energy, Continued. Summary So Far Work-Energy Theorem: W net = (½)m(v 2 ) 2 - (½)m(v 1 ) 2   KE Total work done by ALL forces! Kinetic.
Potential Energy and Conservation of Energy
 One for which work done does not depend on the path taken only on initial and final positions  Gravity and elastic forces are conservative  Why is.
Conservation of Energy
Work, Energy & Power AP Physics B. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Work and Energy. October 2012.
Copyright © 2009 Pearson Education, Inc. © 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for.
Chapter8: Conservation of Energy 8-7 Gravitational Potential Energy and Escape Velocity 8-8 Power HW6: Chapter 9: Pb. 10, Pb. 25, Pb. 35, Pb. 50, Pb. 56,
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Work and Energy 1.What is work? 2.What is energy? 3.What does horsepower and torque of an engine tell you about a car?
Work Done by a Constant Force The work done by a constant force is defined as the distance moved multiplied by the component of the force in the direction.
Copyright © 2009 Pearson Education, Inc. Lecture 4b Conservation of Energy Power Efficiency 1.
Chapter 6 Work and Energy © 2014 Pearson Education, Inc. No need to write information in red.
Kinetic energy exists whenever an object which has mass is in motion with some velocity. Everything you see moving about has kinetic energy. The kinetic.
Three things necessary to do Work in Physics:
Chapter 6 Work and Energy.
Topic VII Work and Energy
Solving Problems with Energy Conservation.
Chapter 6 Work and Energy
Chapter 6 Work and Energy.
Chapter 6 Work and Energy
Chapter 6 Work and Energy.
Chapter 6 Work and Energy
Physics: Principles with Applications, 6th edition
Chapter 13 Work and Energy.
Physics: Principles with Applications, 6th edition
Physics: Principles with Applications, 6th edition
Chapter 6 Work and Energy
Physics: Principles with Applications, 6th edition
Presentation transcript:

6-7 Problem Solving Using Conservation of Mechanical Energy In the image on the left, the total mechanical energy is: The energy buckets (right) show how the energy moves from all potential to all kinetic.

Example 6-8 If the original height of the rock is y1=h=3.0 m, calculate the rock’s speed when it has fallen to 1.0 m abve the ground.

6-7 Problem Solving Using Conservation of Mechanical Energy If there is no friction, the speed of a roller coaster will depend only on its height compared to its starting height.

Example 6-9 Assuming the height of the hill is 40 m, and the roller-coaster ca starts from rest at the top, calculate (a) the speed of the roller coaster car at the bottom of the hill, and (b) at what height it will have half this speed. Take y=0 at the bottom of the hill.

6-7 Problem Solving Using Conservation of Mechanical Energy For an elastic force, conservation of energy tells us: (6-14)

Example 6-11 A dart of mass 0.100 kg is pressed against the spring of a toy dart gun. The spring (with spring stiffness constant k=250 N/m) is compressed 6.0 cm and released. If the dart detaches from the spring when the spring reaches its natural length (x=0), what speed does the dart acquire?

Example 6-12 A ball of mass m=2.60 kg, starting from rest, falls a vertical distance h=55.0 cm before striking a vertical coiled spring, which it compresses an amount Y=15.0 cm. Determine the spring stiffness constant of the spring. Assume the spring has negligible mass, and ignore air resistance. Measure all distances from the point where the ball first touches the uncompressed spring (y=0 at this point).

6-8 Other Forms of Energy; Energy Transformations and the Conservation of Energy Some other forms of energy: Electric energy, nuclear energy, thermal energy, chemical energy. Work is done when energy is transferred from one object to another. Accounting for all forms of energy, we find that the total energy neither increases nor decreases. Energy as a whole is conserved.

6-9 Energy Conservation with Dissipative Processes; Solving Problems If there is a nonconservative force such as friction, where do the kinetic and potential energies go? They become heat; the actual temperature rise of the materials involved can be calculated.

6-9 Energy Conservation with Dissipative Processes; Solving Problems Problem Solving: Draw a picture. Determine the system for which energy will be conserved. Figure out what you are looking for, and decide on the initial and final positions. Choose a logical reference frame. Apply conservation of energy. Solve.

Example 6-13 The roller-coaster car reaches a vertical height of only 25 m on the second hill before coming to a momentary stop. It traveled a total distance of 400 m. Estimate the average friction force (assume constant) on the car, whose mass is 1000 kg.

6-10 Power Power is the rate at which work is done – (6-17) In the SI system, the units of power are watts: The difference between walking and running up these stairs is power – the change in gravitational potential energy is the same.

Example 6-14 A 60. Kg jogger runs up a long flight of stairs in 4.0 s. The vertical height of the stairs is 4.5 m. (a) Estimate the jogger’s power output in watts and horsepower. (b) How much energy did this require? The person had to transform more energy than this 2600 J. The total energy transformed by a person or an engine always includes some thermal energy (recall how hot you get running up stairs).

6-10 Power Power is also needed for acceleration and for moving against the force of gravity. The average power can be written in terms of the force and the average velocity: (6-17)

Example 6-15 Calculate the power required of a 1400 kg car under the following circumstances: (a) the car climbs a 10 degree hill at a steady 80. Km/h; and (b) the car accelerates along a level road from 90. to 110 km/h in 6.0 s to pass another car. Assume the retarding force on the car is FR=700 N (due to air resistance).

Summary of Chapter 6 Work: Kinetic energy is energy of motion: Potential energy is energy associated with forces that depend on the position or configuration of objects. The net work done on an object equals the change in its kinetic energy. If only conservative forces are acting, mechanical energy is conserved. Power is the rate at which work is done.

Homework - Ch. 6 Questions #’s 2, 3, 4, 12, 13, 14, 21, 24 Problems #’s 5, 9, 19, 29, 31, 37, 39, 43, 49, 63, 65, 67, 69