Fermi LAT Observations of Galactic and Extragalactic Diffuse Emission Jean-Marc Casandjian, on behalf of the Fermi LAT collaboration 7 questions addressed.

Slides:



Advertisements
Similar presentations
The Galactic diffuse emission Sabrina Casanova, MPIK Heidelberg XXth RENCONTRES DE BLOIS 18th - 23rd May 2008, Blois.
Advertisements

_CygCocoon_Suzaku_JPS.ppt T. Mizuno et al. 「すざく」による白鳥座に発見され たガンマ線超過の X 線探査 (2) (“Suzaku Observation of the Fermi Cygnus Cocoon: Search for a Signature.
Suzaku Observation of the Fermi Cygnus Cocoon Tsunefumi Mizuno, Toshiaki Tanabe, Hiromitsu Takahashi (Hiroshima Univ.), Katsuhiro Hayashi (ISAS/JAXA),
Astroparticle physics 2. The Milky Way interstellar medium and cosmic-rays Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica.
The Fermi Bubbles as a Scaled-up Version of Supernova Remnants and Predictions in the TeV Band YUTAKA FUJITA (OSAKA) RYO YAMAZAKI (AOYAMA) YUTAKA OHIRA.
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
Supernova HE Francesco Giordano University and INFN Bari Gamma 400 Workshop.
Upper Limit on the Cosmological  - Ray Background Yoshiyuki Inoue (Stanford) Kunihito Ioka (KEK) 1.
Observations of the isotropic diffuse gamma-ray emission with the Fermi Large Area Telescope Markus Ackermann SLAC National Accelerator Laboratory on behalf.
Fermi-LAT Study of Cosmic-Ray Gradient in the Outer Galaxy --- Fermi-LAT view of the 3 rd Quadrant --- Tsunefumi Mizuno (Hiroshima Univ.), Luigi Tibaldo.
Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei Philipp Mertsch Rudolf Peierls Centre for Theoretical Physics, University.
Challenges in Revealing Dark Matter from the High Energy Gamma-Ray Background (Continuum) Ranga-Ram Chary Spitzer Science Center, Caltech
Galactic Diffuse Gamma-ray Emission, the EGRET Model, and GLAST Science Stanley D. Hunter NASA/GSFC Code 661
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
Deciphering the gamma-ray background: stafrorming galaxies, AGN, and the search for Dark Matter in the GeV Band. Vasiliki Pavlidou Einstein Fellow Shin’ichiro.
Igor V. Moskalenko (Stanford) with S. Digel (SLAC) T. Porter (UCSC) O. Reimer (Stanford) O. Reimer (Stanford) A. W. Strong (MPE) A. W. Strong (MPE) Diffuse.
Simulating the Gamma Ray Sky Andrew McLeod SASS August 12, 2009.
Igor V. Moskalenko (Stanford U.) with A.Strong (MPE), S.Digel (SLAC), T.Porter (USCS), O.Reimer (SU) Modeling of the Galactic diffuse continuum γ-ray emission.
Molecular clouds and gamma rays
HEAD 2010 – Mar.3, 2010 :: IVM/Stanford-KIPAC 1IVM/Stanford-KIPAC 1 PAMELA Workshop, Rome/May 12, 2009 Igor V. Moskalenko (stanford/kipac) Leptons in Cosmic.
High-energy electrons, pulsars, and dark matter Martin Pohl.
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
Interaction of Cosmic-Rays with the Solar System Bodies as seen by Fermi LAT Monica Brigida Bari University For the Fermi LAT Collaboration.
Figure 5. The LAT and the GLAST spacecraft. GLAST will also carry a gamma-ray burst monitor, the GBM instrument. For more information about GLAST, see.
1 Additional observable evidences of possible new physics Lecture from the course “Introduction to Cosmoparticle Physics”
Mar. 7, Kyoto Univ. Tsunefumi Mizuno (Hiroshima Univ.)
Tsunefumi Mizuno 1 Fermi_Diffuse_ASJ_2010Mar.ppt Fermi-LAT Study of Galactic Cosmic-Ray Distribution -- CRs in the Outer Galaxy -- Tsunefumi Mizuno Hiroshima.
Observations of the Large Magellanic Cloud with Fermi Jürgen Knödlseder (Centre d’Etude Spatiale des Rayonnements) On behalf of the Fermi/LAT collaboration.
MA4: HIGH-ENERGY ASTROPHYSICS Critical situation of manpower : 1 person! Only «free research» based in OAT. Big collaborations based elsewhere (Fermi,
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
Particle Velocity Effects in the Anisotropy of Extragalactic Diffuse Gamma-rays from Dark Matter Annihilation Sheldon Campbell, Texas A&M University Continuation.
The science objectives for CALET Kenji Yoshida (Shibaura Institute of Technology) for the CALET Collaboration.
Characterizing cosmic ray propagation in massive star forming regions: the case of 30 Dor and LMC E. J. Murphy et al. Arxiv:
Tsunefumi Mizuno 1 Fermi_Diffuse_2009Mar.ppt Diffuse Gamma- Rays seen by Fermi- LAT and Cosmic- Ray Distributions Tsunefumi Mizuno Hiroshima Univ. on behalf.
Newly Born Pulsars as Sources of High and Ultrahigh Energy Cosmic Rays Ke Fang University of Chicago ISCRA - Jul 9, KF, Kotera, Olinto 2012, ApJ,
_CygCocoon_Suzaku_JPS.ppt T. Mizuno et al. X-ray Investigation of  -ray Excess in Cygnus Region “Cygnus Cocoon” by Suzaku ( 「すざく」による白鳥座に発見さ れたガンマ線超過の.
MARCH 11YPM 2015  ray from Galactic Center Tanmoy Mondal SRF PRL Dark Matter ?
TOWARDS THE FIRST FERMI SNR CATALOG F. Giordano 1, T. Brandt 2 & F. Acero 2, F. de Palma 1, J. Hewitt 2 for the Fermi Collaboration 1 University and INFN.
VERITAS Observations Of M 31 and some results about my recent work
Diffuse Emission and Unidentified Sources
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Cosmic Rays High Energy Astrophysics
Propagation of CR electrons and the interpretation of diffuse  rays Andy Strong MPE, Garching GLAST Workshop, Rome, 17 Sept 2003 with Igor Moskalenko.
Cosmic Ray Excesses From Multi-Component Dark Matter Da Huang Physics Department, Fo Guang Shan Fo Guang Shan PRD89, (2014) [arXiv:
Gamma-ray Measurements of the distribution of Gas and Cosmic Ray in the Interstellar Space Yasushi Fukazawa Hiroshima University.
Multi-wavelength signals of dark matter annihilations in the Galactic diffuse emission (based on MR and P. Ullio, arXiv: )‏ Marco Regis University.
論文紹介 _2010-Jan.ppt Tsunefumi Mizuno 1 Fermi 衛星でみた拡散ガンマ線放射と銀河宇宙線 Tsunefumi Mizuno Hiroshima Univ. June 15, 2009 "Fermi Large Area Telescope Measurements.
Fermi LAT Observations of Galactic and Extragalactic Diffuse Emission Jean-Marc Casandjian, on behalf of the Fermi LAT collaboration 7 questions addressed.
Radiation fields in the Milky Way and their role in High-Energy Astrophysics Richard Tuffs, Ruizhi Yang, & Felix Aharonian (MPI-Kernphysik Heidelberg)
COSMIC RAYS. At the Earth’ Surface We see cascades from CR primaries interacting with the atmosphere. Need to correct for that to understand their astronomical.
Fermi Gamma-ray Space Telescope Searches for Dark Matter Signals Workshop for Science Writers Introduction S. Ritz UCSC Physics Dept. and SCIPP On behalf.
On the Galactic Center being the main source of Galactic Cosmic Rays as evidenced by recent cosmic ray and gamma ray observations Yiqing Guo, Zhaoyang.
Time-Dependent Spectra of Cosmic Rays escaped from SNRs Igor Telezhinsky, DESY, Zeuthen, Germany. Vikram Dwarkadas, University of Chicago, Chicago, USA.
Interstellar gamma-rays: first large-scale results from Fermi-LAT Andy Strong on behalf of Fermi-LAT collaboration ICRC Lodz 7-15 July 2009 OG2.1 ID 0390.
Modified from talk of Igor V. Moskalenko (Stanford U.) GALPROP & Modeling the Diffuse  -ray Emission.
Topics on Dark Matter Annihilation
Diffuse Galactic Emission
On behalf of the ARGO-YBJ collaboration
HARD X-RAY/SOFT g-RAY OBSERVATIONS OF THE GALACTIC DIFFUSE EMISSION WITH INTEGRAL/SPI SPI SPECTROMETER (20 keV – 8 MeV, foV 30°) ONBOARD INTEGRAL OBSERVATORY.
with Xiang-Yu Wang, Ruo-Yu Liu, Fang-Kun Peng and P.H.T. Tam
Can dark matter annihilation account for the cosmic e+- excesses?
Status and issues for the LAT interstellar emission model
Fermi-LAT Study of Diffuse g-rays and CRs in the outer Galaxy
Particle Acceleration in the Universe
Galactic Diffuse Emission for DC2
Galactic Cosmic-Rays Observed by Fermi-LAT
on behalf of the Fermi-LAT Collaboration
Diffuse Gamma-Rays seen by Fermi Gamma-ray Space Telescope
Two-zone diffusion of e-/e+ from Geminga explains the e+ anomaly
A. Uryson Lebedev Physical Institute RAS, Moscow
Presentation transcript:

Fermi LAT Observations of Galactic and Extragalactic Diffuse Emission Jean-Marc Casandjian, on behalf of the Fermi LAT collaboration 7 questions addressed during this presentation What are the origins of the Milky-Way γ -ray diffuse emission ? Is the cosmic ray (CR) density uniform within ~1 kpc from the sun ? How does the CR density vary with the Galactocentric distance ? Are the CR and ISM density coupled ? Does FERMI see the EGRET GeV excess ? Can we model the Galactic diffuse emission ? Can the EGB be explained by unresolved AGN ?

Fermi LAT Observations of Galactic and Extragalactic Diffuse Emission Jean-Marc Casandjian, on behalf of the Fermi LAT collaboration 100%11%

100%89% Fermi LAT Observations of Galactic and Extragalactic Diffuse Emission Jean-Marc Casandjian, on behalf of the Fermi LAT collaboration

What are the origins of the Milky-Way γ -ray diffuse emission ? 1.

Processes for HE γ production : Diffuse Emission : study of CR, ISM and ISRF

Abdo et al., ApJ 703, 1249 (2009), C.A.: T. Mizuno No H 2, γ intensity is proportional to HI column density γ -ray intensities (sources and IC removed) versus HI column densities 200º≤ l ≤ 260º, 22º ≤ |b| ≤ 60º

89% LAT minus sources

74% LAT minus sources, isotropic

26% LAT minus sources, isotropic, HI

17% LAT minus sources, isotropic, HI, H2

<1% LAT minus sources, isotropic, HI, H2, Inverse Compton

<1% LAT minus sources, isotropic, HI, H2, Inverse Compton, dark gas

LAT diffuse Fermi diffuse model The diffuse emission can be modelled with a linear combination of various templates

Is the cosmic ray density uniform within ~1 kpc from the sun ? 3 regions were investigated: ➡ 200º≤ l ≤ 260º, 22º ≤ |b| ≤ 60º Abdo et al., ApJ 703, 1249 (2009), C.A.: T. Mizuno ➡ 100º≤ l ≤ 145º, -15º≤ b ≤ 30º (local arm) Abdo et al., ApJ 710, 133 (2010) C.A.: L. Tibaldo, I. Grenier ➡ 210º≤ l ≤ 250º, -15º≤ b ≤ 20º (local arm) Abdo et al., submitted, C.A.: T. Mizuno, L. Tibaldo, I. Grenier 2.

200º≤ l ≤ 260º, 22º ≤ |b| ≤ 60º100º≤ l ≤ 145º, -15º≤ b ≤ 30º 210º≤ l ≤ 250º, -15º≤ b ≤ 20º Preliminary

It is uniform within systematics the local CR nuclei spectra are close to those directly measured at the Earth Is the cosmic ray density uniform within ~1 kpc from the sun ?

How does the CR density vary with the Galactocentric distance ? 3. 2 regions were investigated: ➡ 100º≤ l ≤ 145º, -15º≤ b ≤ 30º Abdo et al., ApJ 710, 133 (2010) C.A.: L. Tibaldo, I. Grenier ➡ 210º≤ l ≤ 250º, -15º≤ b ≤ 20º Abdo et al., submitted, C.A.: T. Mizuno, L. Tibaldo, I. Grenier

Preliminary flat source distribution in R>=R bk (dotted line) SNR distribution (solid line) Z h =1, 2, 4, 10, 15 and 20 kpc Preliminary GALPROP prediction using PSR distribution as input sources this work Varying the HALO size Varying the source distribution 100º≤ l ≤ 145º, -15º≤ b ≤ 30º 210º≤ l ≤ 250º, -15º≤ b ≤ 20º

How does the CR density vary with the Galactocentric distance ? Decrease of CR densities but with a gradient flatter than expectations for SNR sources as traced by PSR -> larger halo ?

Are the CR and ISM density coupled ? Association of CR sources with regions of massive clouds ? Confinement of CRs by magnetic fields associated with the gas ? 4.

is there an arm/inter arm CR effect velocity-longitude profile of H I emission Local Inter arm Perseus arm

Are the CR and ISM density coupled ? Abdo et al., submitted, C.A.: T. Mizuno, L. Tibaldo, I. Grenier Systematics related to HI spin temperature arm inter-arm { {{

Are the CR and ISM density coupled ? No large enhancement in the spiral arms with respect to the interarm region

Does FERMI see the EGRET GeV excess ? 5.

Does FERMI see the EGRET GeV excess ? Abdo et al., Phys. Rev. Lett. 103, (2009) C.A.: T. Porter, G. Johannesson LAT spectrum does not confirm the EGRET GeV excess 200º≤ l ≤ 260º, 22º ≤ |b| ≤ 60º 0º≤ l ≤ 360º, 10º ≤ |b| ≤ 20º Hunter et al. 1997

Can we model the large scale structures of the Galactic interstellar emission ? Strong et al., Annual Reviews of Nuclear and Particle Science, With Galprop we can (covered by Troy Porter) 6.

Can the EGB be explained by unresolved AGN ? 7.

primary protons alpha + heavy ion EGRET EGB sec. protons sec. positrons sec. electrons albedo-gammas prim. electrons Can the EGB be explained by unresolved AGN ?

Abdo et al., Physical Review Letters 104 (2010) , C.A.: M. Ackermann Possible origins of the EGB : blazars, star forming galaxies, radio-quiet AGN, millisecond pulsars, intergalactic shocks, dark matter annihilation, UHECR interacting with EBL... Can the EGB be explained by unresolved AGN ?

Real Simulated LogN-logS Blazars account for <30% of the EGB 70% of the EGB currently unexplained Can the EGB be explained by unresolved AGN ? Abdo et al., accepted, C.A.: M. Ajello, A. Tramacere

Star Forming Galaxies Fields,Pavlidou,Pradanovic 2010

Conclusion 7 answers given during this presentation With the diffuse emission we study the CR, ISM and ISRF. The CR density is uniform within ~1 kpc from the sun. We observe a flatter than expected decrease of the CR density with the Galactocentric distance. No sign of coupling between CR and ISM density was observed. No FERMI GeV excess. We can model the Galactic diffuse emission with Galprop. Unresolved AGN can not explain all the EGB.