TAE-EP Interaction in ARIES ACT-I K. Ghantous, N.N Gorelenkov PPPL ARIES Project Meeting,, 26 Sept. 2012.

Slides:



Advertisements
Similar presentations
Magnetic Relaxation in MST S. Prager University of Wisconsin and CMSO.
Advertisements

Short wavelength ion temperature gradient driven instability in toroidal plasmas Zhe Gao, a) H. Sanuki, b) K. Itoh b) and J. Q. Dong c) a) Department of.
Berkery – Kinetic Stabilization NSTX Jack Berkery Kinetic Effects on RWM Stabilization in NSTX: Initial Results Supported by Columbia U Comp-X General.
Lecture Series in Energetic Particle Physics of Fusion Plasmas Guoyong Fu Princeton Plasma Physics Laboratory Princeton University Princeton, NJ 08543,
Limiting Energy Spectrum of a Saturated Radiation Belt Michael Schulz 1037 Twin Oak Court Redwood City, CA (USA) from Schulz and Davidson [JGR, 93,
A Kinetic-Fluid Model for Studying Thermal and Fast Particle Kinetic Effects on MHD Instabilities C. Z. Cheng, N. Gorelenkov and E. Belova Princeton Plasma.
Inter-ELM Edge Profile and Ion Transport Evolution on DIII-D John-Patrick Floyd, W. M. Stacey, S. Mellard (Georgia Tech), and R. J. Groebner (General Atomics)
6 th ITPA MHD Topical Group Meeting combined with W60 IEA Workshop on Burning Plasmas Session II MHD Stability and Fast Particle Confinement General scope.
Cyclic MHD Instabilities Hartmut Zohm MPI für Plasmaphysik, EURATOM Association Seminar talk at the ‚Advanced Course‘ of EU PhD Network, Garching, September.
Nonlinear Simulations of ELMs with NIMROD D.P. Brennan Massachussetts Institute of Technology Cambridge, MA S.E. Kruger Tech-X Corp, Boulder, CO A. Pankin,
Lecture Series in Energetic Particle Physics of Fusion Plasmas
Kinetic Theories of Geodesic Acoustic Modes in Toroidal Plasmas Zhiyong Qiu, F. Zonca and L. Chen IFTS, May 2010.
INTRODUCTION OF WAVE-PARTICLE RESONANCE IN TOKAMAKS J.Q. Dong Southwestern Institute of Physics Chengdu, China International School on Plasma Turbulence.
Discrete Alfven Eigenmodes Shuang-hui Hu College of Sci, Guizhou Univ, Guiyang Liu Chen Dept of Phys & Astr, UC Irvine Supported by DOE and NSF.
Univ. Madeira Dept. Física Universidade da Madeira Departamento de Física COST 529 Meeting Eindhoven, March 31st, 2006 project Modes of current transfer.
Fast ion effects on fishbones and n=1 kinks in JET simulated by a non-perturbative NOVA-KN code TH/5-2Rb N.N. Gorelenkov 1), C.Z.Cheng 1), V.G. Kiptily.
Plasma Characterisation Using Combined Mach/Triple Probe Techniques W. M. Solomon, M. G. Shats Plasma Research Laboratory Research School of Physical Sciences.
GSEP 3 rd Annual Project Meeting Zhihong Lin & US DOE SciDAC GSEP Team 8/9-8/10, 2010, GA.
D. Borba 1 21 st IAEA Fusion Energy Conference, Chengdu China 21 st October 2006 Excitation of Alfvén eigenmodes with sub-Alfvénic neutral beam ions in.
F.M.H. Cheung School of Physics, University of Sydney, NSW 2006, Australia.
Computer simulations of fast frequency sweeping mode in JT-60U and fishbone instability Y. Todo (NIFS) Y. Shiozaki (Graduate Univ. Advanced Studies) K.
Advanced Tokamak Plasmas and the Fusion Ignition Research Experiment Charles Kessel Princeton Plasma Physics Laboratory Spring APS, Philadelphia, 4/5/2003.
Nonlinear Frequency Chirping of Alfven Eigenmode in Toroidal Plasmas Huasen Zhang 1,2 1 Fusion Simulation Center, Peking University, Beijing , China.
Wave-Particle Interaction in Collisionless Plasmas: Resonance and Trapping Zhihong Lin Department of Physics & Astronomy University of California, Irvine.
Kinetic Effects on the Linear and Nonlinear Stability Properties of Field- Reversed Configurations E. V. Belova PPPL 2003 APS DPP Meeting, October 2003.
ITPA Diagnostics 4/06 The Importance of Fast-Ion Profile Measurements in ITER W. Heidbrink Three examples from DIII-D Conclusion Fast-ion D  (FIDA) Technique.
J A Snipes, 6 th ITPA MHD Topical Group Meeting, Tarragona, Spain 4 – 6 July 2005 TAE Damping Rates on Alcator C-Mod Compared with Nova-K J A Snipes *,
Hybrid Simulations of Energetic Particle-driven Instabilities in Toroidal Plasmas Guo-Yong Fu In collaboration with J. Breslau, J. Chen, E. Fredrickson,
TH/7-2 Radial Localization of Alfven Eigenmodes and Zonal Field Generation Z. Lin University of California, Irvine Fusion Simulation Center, Peking University.
Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2.
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
HAGIS Code Lynton Appel … on behalf of Simon Pinches and the HAGIS users CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority.
Modeling Beam Ion Relaxation with application to DIII-D K.Ghantous, N.N. Gorelenkov PPPL, 2012.
Lecture Series in Energetic Particle Physics of Fusion Plasmas
Stability Properties of Field-Reversed Configurations (FRC) E. V. Belova PPPL 2003 International Sherwood Fusion Theory Conference Corpus Christi, TX,
1 Three views on Landau damping A. Burov AD Talk, July 27, 2010.
Nonlinear interactions between micro-turbulence and macro-scale MHD A. Ishizawa, N. Nakajima, M. Okamoto, J. Ramos* National Institute for Fusion Science.
2 The Neutral Particle Analyzer (NPA) on NSTX Scans Horizontally Over a Wide Range of Tangency Angles Covers Thermal ( keV) and Energetic Ion.
(National Institute for Fusion Science, Japan)
Contribution of KIT to LHD Topics from collaboration research on MHD phenomena in LHD S. Masamune, K.Y. Watanabe 1), S. Sakakibara 1), Y. Takemura, KIT.
Lecture Series in Energetic Particle Physics of Fusion Plasmas Guoyong Fu Princeton Plasma Physics Laboratory Princeton University Princeton, NJ 08543,
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
Alfven Waves in Toroidal Plasmas
Summary of IAEA Theory Papers on Energetic Particle Physics Guoyong Fu.
Simulations of NBI-driven Global Alfven Eigenmodes in NSTX E. V. Belova, N. N. Gorelenkov, C. Z. Cheng (PPPL) NSTX Results Forum, PPPL July 2006 Motivation:
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
Using microwaves to study fast ion driven modes in NSTX N.A. Crocker, S. Kubota, W.A. Peebles, G. Wang, T. Carter (UCLA); E.D. Fredrickson, B.P. LeBlanc,
21st IAEA Fusion Energy Conf. Chengdu, China, Oct.16-21, /17 Gyrokinetic Theory and Simulation of Zonal Flows and Turbulence in Helical Systems T.-H.
1 Instabilities and Phase Space Tomography in RR Alexey Burov RR Talk May
Helically Symmetry Configuration Evidence for Alfvénic Fluctuations in Quasi-Helically Symmetric HSX Plasmas C. Deng and D.L. Brower, University of California,
Simulations of Energetic Particle Modes In Spherical Torus G.Y. Fu, J. Breslau, J. Chen, E. Fredrickson, S. Jardin, W. Park Princeton Plasma Physics Laboratory.
Nonlinear Simulations of Energetic Particle-driven Modes in Tokamaks Guoyong Fu Princeton Plasma Physics Laboratory Princeton, NJ, USA In collaboration.
Kinetic-Fluid Model for Modeling Fast Ion Driven Instabilities C. Z. Cheng, N. Gorelenkov and E. Belova Princeton Plasma Physics Laboratory Princeton University.
Effect of Energetic-Ion/Bulk-Plasma- driven MHD Instabilities on Energetic Ion Loss in the Large Helical Device Kunihiro OGAWA, Mitsutaka ISOBE, Kazuo.
1 ASIPP Sawtooth Stabilization by Barely Trapped Energetic Electrons Produced by ECRH Zhou Deng, Wang Shaojie, Zhang Cheng Institute of Plasma Physics,
Energetic Particles Interaction with the Non-resonant Internal Kink in Spherical Tokamaks Feng Wang*, G.Y. Fu**, J.A. Breslau**, E.D. Fredrickson**, J.Y.
TH/7-1Multi-phase Simulation of Alfvén Eigenmodes and Fast Ion Distribution Flattening in DIII-D Experiment Y. Todo (NIFS, SOKENDAI) M. A. Van Zeeland.
6 th ITPA MHD Topical Group Meeting combined with W60 IEA Workshop on Burning Plasmas Summary Session II MHD Stability and Fast Particle Confinement chaired.
Energetic ion excited long-lasting “sword” modes in tokamak plasmas with low magnetic shear Speaker:RuiBin Zhang Advisor:Xiaogang Wang School of Physics,
NIMROD Simulations of a DIII-D Plasma Disruption S. Kruger, D. Schnack (SAIC) April 27, 2004 Sherwood Fusion Theory Meeting, Missoula, MT.
FPT Discussions on Current Research Topics Z. Lin University of California, Irvine, California 92697, USA.
Non-local Transport of Strongly Coupled Plasmas Satoshi Hamaguchi, Tomoyasu Saigo, and August Wierling Department of Fundamental Energy Science, Kyoto.
M. Fitzgerald, S.E. Sharapov, P. Rodrigues2, D. Borba2
8th IAEA Technical Meeting on
Garching-Greifswald Ringberg Theory Meeting
Reduced energetic particle transport models enable comprehensive
Non-Local Effects on Pedestal Kinetic Ballooning Mode Stability
Stabilization of m/n=1/1 fishbone by ECRH
Simulations of energetic particle driven instabilities and fast particle redistribution in EAST tokamak Fishbone simulation by M3D-K: The simulation results.
Alfvén eigenmodes (AE) degrade fast-ion confinement in high βN, steady-state scenarios W.W. (Bill) Heidbrink1 with J. Ferron,2 C. Holcomb,3 M. Van Zeeland2,
Presentation transcript:

TAE-EP Interaction in ARIES ACT-I K. Ghantous, N.N Gorelenkov PPPL ARIES Project Meeting,, 26 Sept. 2012

Alpha particles transport Since v  ≥ v A Its possible that a particles resonantly interact with Alfvenic modes. This can drive modes unstable. However, MHD modes are heavily dampened by phase mixing due to the continuum. BUT TAE modes can exist! They are isolated eigenmodes and are susceptible to being driven unstable. Due to toroidicity, modes couple and a gap is created in MHD continuum at And this is where the TAE mode resides at  TAE ≈v A /2qR 1

Known 1D bump on tail. Positive slope in v results in growth of modes. Inverse Landau damping. The distribution of EP is decreasing in r. TAE modes driven unstable by  particles 2

Known 1D bump on tail. Positive slope in v results in growth of modes. Inverse Landau damping. TAE modes driven unstable by  particles So distribution of EP as a function of P  3

Particles resonate with TAE modes at where  particles profiles are modified due to interaction with modes. Modes drive by free energy of  particles depends on their profiles.  1.5D modeling: And use linear theory to model drive and damping of TAE modes due to background plasmas and alphas Transport of alphas due to TAE modes is modeled based on QL theory TAE -  particle Interaction 4

QL model where instability Saturation at marginal stability diffusion Illustration of self consistent QL relaxation 5

Linear theory for growth rate. Instead of integrating the expressions for  We use expressions that are approximations: the mode number, plateau of maximum Plasma parameters ( given by TRANSP) Isotropy (isotropic for alphas) 1.5D Reduced QL model Linear theory for damping rates. Main mechanisms in ARIES are: Ion Landau damping Radiative Damping 6

Integrating relaxed profiles. Instead of solving the self-consistent QL equation. We assume the distribution function keeps diffusing until TAE modes are marginally stable everywhere. i.e 7

Integrating relaxed profiles. Instead of solving the self-consistent QL equation. We assume the distribution function keeps diffusing until TAE modes are marginally stable everywhere. i.e 8

Integrating relaxed profiles. With the constraints: continuity Particle conservation Instead of solving the self-consistent QL equation. We assume the distribution function keeps diffusing until TAE modes are marginally stable everywhere. i.e 9

Kolesnichenko’s rough estimate for the percentage of particles that are resonant is  Accounting for velocity dimension Only part of the phase space resonant with the mode. Fraction of space calculated by Kolesnichenko is 10

NOVA and NOVA-K To apply 1.5D on experimental results, NOVA and NOVA-K are used to give quantitative accuracy to the analytically computed profiles. We find the two most localized modes from NOVA for a given n close to the expected values at the plateau. We calculate the damping and maximum growth rate at the two locations, r1 and r2, to which the analytic rates are calibrated to by multiplying them by the following factor, g(r). 111

Validation with DIII-D runs TAE observation using interferometers FIDA measures of the distribution function 12

NOVA and NOVA-K results 13

Applying 1.5D model on DIIID 14

We use the quintessential case 10001A53 at t=600 ms to run NOVA ARIES ACT-1 parameters from TRANSP We apply 1.5D on shot 10001A53 at t = 250, 400, 600, 800 and 1190 ms The Tokamak parameters are 15

NOVA and NOVA-K ARIES ACT-1 16

1.5D Model results with NOVA normalization at t=600 Loss 4% 17

18

19

20

Analytic expressions 21

Analytic expressions 22

Parameter space loss diagram Given, T i0 and  p0 we can estimate T i (r),  p (r),   (r). Given profiles, we can compute  ,  iL,  iT,  eColl This allows to make a parameter space analysis of TAE stability and  particle losses. Caveat: Radiative damping’s analytic expression requires knowledge of the details of T e profiles and the safety factor and shear profiles, making it hard to model without further assumptions. 23

Parameter space diagram 24

Parameter space diagram agrees with NOVA-K normalized 1.5D if radiative damping is not considered. Accounting for radiative damping might shift the loss diagram significantly allowing for a large operational space without any significant  particle losses. Parameter space diagram INCONCLUSIVE 25

Conclusion Using NOVA and 1.5D model, there can be up to 9% loss of  particles. (Since 1.5D is a conservative model, this is great news for ARIES ACT-1.) More detailed study of the radiative damping is required to access whether the TAE modes in ARIES ACT-1 will result in losses or not. As a preliminary study,  particles in ARIES ACT-1 are well confined upon interacting with TAE modes. 26