Dynamical Simulations in North Atlantic Tropical Cyclone Activity using Observed Low-Frequency SST Oscillation Imposed on CMIP5 Model RCP4.5 SST Projections.

Slides:



Advertisements
Similar presentations
Phil Klotzbach Ironshore Hurricane Seminar April 28 th, 2015.
Advertisements

Caribbean/Central American Hurricane Landfall Probabilities Phil Klotzbach Department of Atmospheric Science Colorado State University Climate Diagnostics.
Tropical Cyclone Intensities: Recent observational studies and simulated response to CO2-induced warming Thomas R. Knutson NOAA/Geophysical Fluid Dynamics.
Suzana J. Camargo Lamont-Doherty Earth Observatory Columbia University ANALYSIS OF 20 TH CENTURY ATLANTIC HURRICANE POTENTIAL INTENSITY AND TROPICAL CYCLONE.
Atlantic Basin Seasonal Hurricane Prediction Phil Klotzbach Department of Atmospheric Science Colorado State University National Hurricane Conference March.
Increased Atlantic Hurricane Frequency, a Synthesis of Two Interpretations Trent Ford Hydrology: GEO 361February 23, 2011.
Serial clustering of US hurricane landfalls
Tropical Cyclone Forecasts Dr. Richard J. Murnane Risk Prediction Initiative Bermuda Biological Station for Research, Inc.
Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009 Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009.
Projections of Future Atlantic Hurricane Activity Hurricane Katrina, Aug GFDL model simulation of Atlantic hurricane activity Tom Knutson NOAA /
Examination of the Dominant Spatial Patterns of the Extratropical Transition of Tropical Cyclones from the 2004 Atlantic and Northwest Pacific Seasons.
Richard P. Allan 1 | Brian J. Soden 2 | Viju O. John 3 | Igor I. Zveryaev 4 Department of Meteorology Click to edit Master title style Water Vapour (%)
Natural Climate Variability: Floods in Veracruz, Mexico in 2010: Alfredo Ruiz-Barradas 1 University of Maryland ----o---- WCRP Open Science Conference:
May 2007 vegetation Kevin E Trenberth NCAR Kevin E Trenberth NCAR Weather and climate in the 21 st Century: What do we know? What don’t we know?
Brief Climate Discussion William F. Ryan Department of Meteorology The Pennsylvania State University.
1 Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009.
Hurricane Climatology and the Seasonal Forecast for the 2012 Hurricane Season John Cole and Andrew McKaughan, NOAA/NWS WFO Newport/Morehead City, NC.
Coastal Meteorology and Atmospheric Prediction (COMAP) Research at Stony Brook University Michael Erickson, Brian A. Colle, Sara Ganetis, Nathan Korfe,
Climate Change Projections of the Tasman Sea from an Ocean Eddy- resolving Model – the importance of eddies Richard Matear, Matt Chamberlain, Chaojiao.
Sensitivity Studies James Done NCAR Earth System Laboratory National Center for Atmospheric Research NCAR is Sponsored by NSF and this work is partially.
Atlantic Basin Seasonal Hurricane Prediction Phil Klotzbach Department of Atmospheric Science Colorado State University CAS Annual Meeting May 20, 2015.
Atlantic Basin Seasonal Hurricane Prediction Phil Klotzbach Department of Atmospheric Science Colorado State University National Tropical Weather Conference.
High Resolution Climate Modelling in NERC (and the Met Office) Len Shaffrey, University of Reading Thanks to: Pier Luigi Vidale, Jane Strachan, Dave Stevens,
Tropical Cyclones and Climate Change: An Assessment WMO Expert Team on Climate Change Impacts on Tropical Cyclones February 2010 World Weather Research.
United States Landfalling Hurricane Webpage Application Philip J. Klotzbach and William M. Gray Colorado State University, Fort Collins, Colorado Abstract.
The La Niña Influence on Central Alabama Rainfall Patterns.
NOAA’s Seasonal Hurricane Forecasts: Climate factors influencing the 2006 season and a look ahead for Eric Blake / Richard Pasch / Chris Landsea(NHC)
Changes in Floods and Droughts in an Elevated CO 2 Climate Anthony M. DeAngelis Dr. Anthony J. Broccoli.
1 Hadley Centre The Atlantic Multidecadal Oscillation: A signature of persistent natural thermohaline circulation cycles in observed climate Jeff Knight,
Modulation of eastern North Pacific hurricanes by the Madden-Julian oscillation. (Maloney, E. D., and D. L. Hartmann, 2000: J. Climate, 13, )
Implications of climate variability & change 1 WMO Expert Meeting on CAT Insurance & Weather Risk Management Markets December 7, 2007 Climate Variability.
The Active 2010 Atlantic Hurricane Season A Climate Perspective Gerry Bell NOAA Lead Seasonal Hurricane Forecaster Climate Prediction Center Related Publications:
Importance to the Off-Shore Energy Industry James Done Chad Teer, Wikipedia NCAR Earth System Laboratory National Center for Atmospheric Research NCAR.
Page 1© Crown copyright 2006 Matt Huddleston With thanks to: Frederic Vitart (ECMWF), Ruth McDonald & Met Office Seasonal forecasting team 14 th March.
Tropical Cyclones and Climate Change in a High Resolution General Circulation Model, HiGEM Ray Bell Supervisors: Prof. Pier Luigi Vidale, Dr. Kevin Hodges.
Research Needs for Decadal to Centennial Climate Prediction: From observations to modelling Julia Slingo, Met Office, Exeter, UK & V. Ramaswamy. GFDL,
© 2005 Accurate Environmental Forecasting Climate and Hurricane Risk Dr. Dail Rowe Accurate Environmental Forecasting
Tropical Cyclones and Climate Change in a High Resolution General Circulation Model, HiGEM Ray Bell Supervisors: Prof. P.L. Vidale, Dr. Kevin Hodges and.
Seasonal Influences upon and Long- Term Trends in the Length of the Atlantic Hurricane Season Juliana M. Karloski and Clark Evans Atmospheric Science Program,
The European Heat Wave of 2003: A Modeling Study Using the NSIPP-1 AGCM. Global Modeling and Assimilation Office, NASA/GSFC Philip Pegion (1), Siegfried.
Feng Zhang and Aris Georgakakos School of Civil and Environmental Engineering, Georgia Institute of Technology Sample of Chart Subheading Goes Here Comparing.
Tropical Cyclones in IFS and NICAM Julia V. Manganello Center for Ocean-Land-Atmosphere Studies (Many thanks to Kevin Hodges!) Athena Workshop, 7-8 June.
An Examination Of Interesting Properties Regarding A Physics Ensemble 2012 WRF Users’ Workshop Nick P. Bassill June 28 th, 2012.
Effect of the Gulf Stream on Winter Extratropical Cyclones Jill Nelson* and Ruoying He Marine, Earth, and Atmospheric Sciences, North Carolina State University,
Using the National Multi-Model Ensemble (NMME) System Johnna Infanti Advisor: Ben Kirtman.
Indo-Pacific Sea Surface Temperature Influences on Failed Consecutive Rainy Seasons over Eastern Africa** Andy Hoell 1 and Chris Funk 1,2 Contact:
Reconciling droughts and landfalling tropical cyclones in the southeastern US Vasu Misra and Satish Bastola Appeared in 2015 in Clim. Dyn.
Judith Curry James Belanger Mark Jelinek Violeta Toma Peter Webster 1
Hurricanes and Global Warming Kerry Emanuel Massachusetts Institute of Technology.
Analysis of Typhoon Tropical Cyclogenesis in an Atmospheric General Circulation Model Suzana J. Camargo and Adam H. Sobel.
ESSL Holland, Hawaii On the Changing Characteristics of Atlantic Hurricanes Summary: Atlantic Changes and Relationship to SST Natural Variability.
ESSL Holland and Webster AMS 0107 Heightened Tropical Cyclone Activity in the North Atlantic: Natural Variability or Climate Trend? Summary: Atlantic Changes.
ENSO Influence on Atlantic Hurricanes via Tropospheric Warming Brian Tang* and David Neelin Dept. of Atmospheric and Oceanic Sciences, UCLA Institute of.
Description of the IRI Experimental Seasonal Typhoon Activity Forecasts Suzana J. Camargo, Anthony G. Barnston and Stephen E.Zebiak.
The Impact of Global Warming on Hurricanes Do we know yet? Alex Ruane 09/29/05.
2003 Atlantic Hurricane Season Summary By Gerald Bell, Muthuvel Chelliah Climate Prediction Center NOAA/ NWS And NOAA Atlantic Hurricane forecast team.
The 2004 Atlantic Hurricane Season and Beyond Chris Landsea NOAA/Hurricane Research Division Miami, Florida, USA January and February 2004 Southern Region.
The Recent Increase in Atlantic Hurricane Activity: Causes and Implications by Stanley B. Goldenberg, Christopher W. Landsea, Alberto M. Mestas-Nuñez,
The Active 2008 Atlantic Hurricane Season Links to Known Climate Factors Gerry Bell NOAA Lead Seasonal Hurricane Forecaster Climate Prediction Center.
Cécile Hannay, Julio Bacmeister, Rich Neale, John Truesdale, Kevin Reed, and Andrew Gettelman. National Center for Atmospheric Research, Boulder EGU Meeting,
Tanya L. Spero1, Megan S. Mallard1, Stephany M
32nd Conference on Hurricanes and Tropical Meteorology
Overview of Downscaling
Shuyi S. Chen, Ben Barr, Milan Curcic and Brandon Kerns
Jacki Kinney Climatology December 6, 2005
1 GFDL-NOAA, 2 Princeton University, 3 BSC, 4 Cerfacs, 5 UCAR
Globale Mitteltemperatur
Globale Mitteltemperatur
by Stanley B. Goldenberg, Christopher W. Landsea, Alberto M
Globale Mitteltemperatur
Presentation transcript:

Dynamical Simulations in North Atlantic Tropical Cyclone Activity using Observed Low-Frequency SST Oscillation Imposed on CMIP5 Model RCP4.5 SST Projections Timothy LaRow *, Lydia Stefanova, Chana Seitz Florida State University ( * Background - AMV and North Atlantic Tropical Cyclones FSU Model and Previous Results Figure 3: Predicted North Atlantic seasonal tropical cyclone counts using the FSU global atmospheric model. Seasonal named tropical cyclone counts – includes tropical storms and hurricanes (left). Hurricane strength storms (right). Red line (observed IBTrACS), black line (ensemble mean), shaded area is the spread of the ensemble. CFSv1/v2 predicted June 1 SSTs used as boundary conditions. LaRow (2013) Model 8.6 Obs 14.2 Model 14.7 Obs 5.4 Model 4.6 Obs 7.8 Model 7.7 Obs Named Tropical Cyclone Counts Hurricane Counts CCSM4 and CanESM2 CMIP5 SSTs Conclusions References Abstract Figure 2: Observed hurricane tracks (≥CAT3) from IBTrACS. Negative AMV (left). Positive AMV (right). Adapted from Goldenberg et al The effects on early and late 21 st century North Atlantic tropical cyclone statistics resulting from imposing the patterns of maximum/minimum phases of the observed Atlantic Multidecadal Oscillation/Variability (AMO/AMV) onto projected sea surface temperatures (SSTs) from two Coupled Model Intercomparison Project 5 (CMIP5) climate models are examined using a 100-km resolution global atmospheric model. The AMV is thought to alter North Atlantic tropical cyclone activity through changes in the magnitude of the SST gradient. By imposing the observed maximum positive and negative phases of the AMV onto two CMIP5 SST projections from the RCP 4.5 scenario this study places bounds on future North Atlantic tropical cyclone activity. During the early ( ) and late ( ) twenty-first century the positive/negative AMV simulations combine to produce a statistically significant increase in the mean number of named tropical cyclones (NTCs) compared to simulations using observed SSTs from The increase is approximately 35%. The positive AMV simulations produce approximately a 68% increase in mean NTC count while the negative AMV simulations are statistically indistinguishable from the mean NTC count calculated from the simulations. Differences in the track densities show an increase in the number of landfalling storms along the east coast of the United States during the negative AMV phase; however, the positive AMV phase shows an increase in storms of higher intensity tracking closer to the U.S. coastline. Figure 1: Positive AMV SST anomaly pattern added to the CMIP5 models for both the early and late 21 st century simulations. Negative AMV SST anomaly pattern is identical to AMV positive pattern but multiplied by - 1. Contour interval 0.1K. Figure 5: Boxplots of named tropical cyclone (NTC) counts and hurricane counts in the North Atlantic. (Top) NTC counts. (Bottom) Hurricane counts. In each box the thick horizontal line represents the median value, whiskers represent the 10 th and 90 th percentiles. OBS1(OBS2) denote the ( ) values from the IBTrACS data. BC1(BC2) denote the ( ) values using the OIv2 SSTs. The early 21 st century negative (positive) AMV simulations are denoted as EN(EP) while the late 21 st century negative (positive) AMV simulations are labeled LN (LP). Outliers (denoted by squares) are considered if they lie outside 1.5 times the inter-quartile range. Mean NTC counts not statistically different between EN/LN and EP/LP Approximately 68% increase in mean NTC counts during AMV+ phase compared to model’s average BC1 and BC2 simulations – occurs for both CCSM4 and CanESM2 SSTs Approximately 72% increase in mean HR counts during AMV+ phase compared to model’s BC1 and BC2 simulations Projected changes in mean HR counts during AMV- phase not statistically different than the model’s mean When averaged over both 20-year time periods and both AMV phases the mean HR count from the CCSM4 SST simulations yield a 24% increase compared to BC2 while the CanESM2 SST simulations yield a 43% increase Figure 6: Factorial changes in track densities (on 3° x 3° grid boxes) between the early and late 21 st century CanESM2 and CCSM4 simulations with the current climate (BC1 and BC2) experiments. The technique used to calculate the factorial change is based on Strazzo et al. (2013). Track density is normalized using the total number of events over the domain. Plotted is the base-two logarithm of the normalized track densities divided by the normalized BC1 and BC2 track densities. CCSM4 shows more Gulf of Mexico landfalls while CanESM2 shows enhanced Southeast impacts. Figure 4: Mean ASO SST time series in the Niño-3.4 and main development region (MDR). Heavy black lines are the historical and RCP 4.5 simulation (not bias corrected) from CMIP5. Red lines show the SSTs for the AMV+ simulations; blue lines show the SSTs for the AMV- simulations. The orange line is the bias corrected time series. For reference, the green lines are the NOAA ERSSTv3b SSTs from The vertical dashed lines bracket the two time periods of the study. Unit Kelvin. Tropical Cyclone Counts Log 2 Track Density Differences Negative AMV Positive AMV CCSM4 CanESM2 Year Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nunez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474–479. LaRow, T. E., 2013: The impact of SST bias correction on North Atlantic hurricane retrospective forecasts. Mon. Wea. Rev., 141, Strazzo, S., J. B. Elsner, T. LaRow, D. J. Halperin, and M. Zhao, 2013: Observed versus GCM- generated local tropical cyclone frequency: Comparisons using a spatial lattice. J. Climate, 26, 8257–8268. Relative SST Anomaly Figure 7: Scatter plots of relative ASO SST anomaly vs. NTC counts for early and late 21 st century positive/negative AMV. Linear trend lines are dashed. r=0.57 r=0.54 r=0.24 r=0.09 r=0.74 r=0.69 r=0.28 r=0.51 Projecting the observed max/min phase of the AMO/AMV phases onto the CCSM4 and CanESM2 CMIP5 RCP4.5 SSTs produced statistically significant changes in North Atlantic tropical cyclone activity in the FSU climate model (Figure 5). Using the max/min AMV phases to bracket the level of hurricane activity in the 21 st century, shows that in a below average season, the frequency will be similar to the high level of activity seen since 1995 (Figure 5). CCSM4 shows more Gulf of Mexico landfalls while CanESM2 shows enhanced Southeast impacts (Figure 6). Relative SST anomaly best predictor for NTC counts in CanESM2 simulations and Nino-3.4 SSTs best predictor in CCSM4 simulations (Figure 7). Acknowledgements Research supported by grant from the Office of Science (BER), U.S. Department of Energy and the NOAA’s Climate Program Office. We acknowledge the World Climate Research Programme’s Working Group on Climate Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.