Making “Good” Encryption Algorithms

Slides:



Advertisements
Similar presentations
CLASSICAL ENCRYPTION TECHNIQUES
Advertisements

Relations, Functions, and Matrices Mathematical Structures for Computer Science Chapter 4 Copyright © 2006 W.H. Freeman & Co.MSCS SlidesThe Mighty Mod.
Using Cryptography to Secure Information. Overview Introduction to Cryptography Using Symmetric Encryption Using Hash Functions Using Public Key Encryption.
Classical Encryption Techniques Week 6-wend. One-Time Pad if a truly random key as long as the message is used, the cipher will be secure called a One-Time.
Cryptology Terminology and Early History. Cryptology Terms Cryptology –The science of concealing the meaning of messages and the discovery of the meaning.
Week 2 - Friday.  What did we talk about last time?  Substitution ciphers  Vigenère ciphers  One-time pad.
EEC 693/793 Special Topics in Electrical Engineering Secure and Dependable Computing Lecture 4 Wenbing Zhao Department of Electrical and Computer Engineering.
Chap 2: Elementary Cryptography.  Concepts of encryption  Cryptanalysis: how encryption systems are “broken”  Symmetric (secret key) encryption and.
EEC 688/788 Secure and Dependable Computing Lecture 4 Wenbing Zhao Department of Electrical and Computer Engineering Cleveland State University
EEC 693/793 Special Topics in Electrical Engineering Secure and Dependable Computing Lecture 5 Wenbing Zhao Department of Electrical and Computer Engineering.
Introduction to Symmetric Block Cipher Jing Deng Based on Prof. Rick Han’s Lecture Slides Dr. Andreas Steffen’s Security Tutorial.
EEC 693/793 Special Topics in Electrical Engineering Secure and Dependable Computing Lecture 5 Wenbing Zhao Department of Electrical and Computer Engineering.
Chapter 2 Basic Encryption and Decryption (part B)
Lecture 1 Overview.
8: Network Security8-1 Symmetric key cryptography symmetric key crypto: Bob and Alice share know same (symmetric) key: K r e.g., key is knowing substitution.
Chapter 13: Electronic Commerce and Information Security Invitation to Computer Science, C++ Version, Fourth Edition SP09: Contains security section (13.4)
Encryption Methods By: Michael A. Scott
Chapter 8.  Cryptography is the science of keeping information secure in terms of confidentiality and integrity.  Cryptography is also referred to as.
IT 221: Classical and Modern Encryption Techniques Lecture 2: Classical and Modern Encryption Techniques For Educational Purposes Only Revised: September.
Chapter 2 – Classical Encryption Techniques
Cryptography Week-6.
Cryptanalysis. The Speaker  Chuck Easttom  
History and Background Part 1: Basic Concepts and Monoalphabetic Substitution CSCI 5857: Encoding and Encryption.
Chapter 2 Basic Encryption and Decryption. csci5233 computer security & integrity 2 Encryption / Decryption encrypted transmission AB plaintext ciphertext.
Lecture 2 Overview.
Security in Computing Cryptography (Introduction) Derived from Greek words: ‘Kruptos’ (hidden) and ‘graphein’ (writing.
Confusion and Diffusion1 Ref: William Stallings, Cryptography and Network Security, 3rd Edition, Prentice Hall, 2003.
Week 2 - Wednesday.  What did we talk about last time?  Encryption  Shift ciphers  Transposition ciphers.
Chapter 2 – Elementary Cryptography  Concepts of encryption  Cryptanalysis  Symmetric (secret key) Encryption (DES & AES)(DES & AES)  Asymmetric (public.
CSCE 201 Introduction to Information Security Fall 2010 Data Protection.
Cryptography and Network Security (CS435) Part Two (Classic Encryption Techniques)
TMK 264: COMPUTER SECURITY CHAPTER TWO: CRYPTOGRAPHY 1.
Day 18. Concepts Plaintext: the original message Ciphertext: the transformed message Encryption: transformation of plaintext into ciphertext Decryption:
Chapter 17 Security. Information Systems Cryptography Key Exchange Protocols Password Combinatorics Other Security Issues 12-2.
ITMS – 3153 Information Systems Security
1 Chapter 2-1 Conventional Encryption Message Confidentiality.
Network Security Lecture 11 Presented by: Dr. Munam Ali Shah.
2002 Networking Operating Systems (CO32010) 1. Operating Systems 2. Processes and scheduling 3.
9/03/15UB Fall 2015 CSE565: S. Upadhyaya Lec 2.1 CSE565: Computer Security Lecture 2 Basic Encryption & Decryption Shambhu Upadhyaya Computer Science &
Elementary Cryptography  Concepts of encryption  Symmetric (secret key) Encryption (DES & AES)(DES & AES)  Asymmetric (public key) Encryption (RSA)(RSA)
Lecture 3 Page 1 Advanced Network Security Review of Cryptography Advanced Network Security Peter Reiher August, 2014.
Lecture 4 Page 1 CS 236 Stream and Block Ciphers Stream ciphers convert one symbol of plaintext immediately into one symbol of ciphertext Block ciphers.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Security.
Computer Security Cryptography. Cryptography Now and Before  In the past – mainly used for confidentiality  Today –Still used for confidentiality –Data.
Data Security and Encryption (CSE348) 1. Lecture # 3 2.
24-Nov-15Security Cryptography Cryptography is the science and art of transforming messages to make them secure and immune to attacks. It involves plaintext,
Computer Science and Engineering Computer System Security CSE 5339/7339 Lecture 3 August 26, 2004.
K. Salah1 Cryptography Module I. K. Salah2 Cryptographic Protocols  Messages should be transmitted to destination  Only the recipient should see it.
DATA & COMPUTER SECURITY (CSNB414) MODULE 3 MODERN SYMMETRIC ENCRYPTION.
Lecture 2 Page 1 CS 236, Spring 2008 More on Cryptography CS 236 On-Line MS Program Networks and Systems Security Peter Reiher Spring, 2008.
Lecture 4 Page 1 CS 236 Stream and Block Ciphers Stream ciphers convert one symbol of plaintext immediately into one symbol of ciphertext Block ciphers.
Lecture 3 Overview. Ciphers The intent of cryptography is to provide secrecy to messages and data Substitutions – ‘hide’ letters of plaintext Transposition.
Lecture 3 Page 1 CS 236 Online Introduction to Cryptography CS 236 On-Line MS Program Networks and Systems Security Peter Reiher.
Lecture 5 Page 1 CS 236 Online More on Cryptography CS 236 On-Line MS Program Networks and Systems Security Peter Reiher.
Lecture 2 Overview. Cryptography Secret writing – Disguised data cannot be read, modified, or fabricated easily – Feasibility of complexity for communicating.
1 Classical Encryption Techniques. 2 Symmetric cipher model –Cryptography –Cryptanalysis Substitution techniques –Caesar cipher –Monoalphabetic cipher.
Prof. Wenguo Wang Network Information Security Prof. Wenguo Wang Tel College of Computer Science QUFU NORMAL UNIVERSITY.
Computer Security By Rubel Biswas. Introduction History Terms & Definitions Symmetric and Asymmetric Attacks on Cryptosystems Outline.
CSE565: Computer Security Lecture 2 Basic Encryption & Decryption
Chapter 2 Basic Encryption and Decryption
Outline Desirable characteristics of ciphers Uses of cryptography
Chapter-2 Classical Encryption Techniques.
Cryptography.
Outline Desirable characteristics of ciphers Stream and block ciphers
Outline Desirable characteristics of ciphers Uses of cryptography
Cryptography II Jagdish S. Gangolly School of Business
Computer Security Chapter Two
Presentation transcript:

Making “Good” Encryption Algorithms Substitution algorithms “hide” the plaintext and dissipate high letter frequencies Transposition algorithms scramble text Many “good” algorithms combine both techniques

Shannon’s Characteristics of “Good” Ciphers Amount of secrecy needed should determine the amount of labor appropriate for encryption/decryption. Set of keys and enciphering algorithm should be free from complexity. Implementation should be simple Errors in ciphering should not propogate. Size of ciphertext should be no larger than the size of the plaintext

Properties of “Trustworthy” Encryption Systems Based on sound mathematics Been analyzed by competent experts and found to be sound Stood the “test of time” Three Examples: DES (data encryption standard) RSA (Rivest-Shamir-Adelman) AES (Advanced Encryption Standard)

Symmetric and Asymmetric Encryption Systems Symmetric requires one “secret” key that is used for encryption AND decryption (e.g. Caesar cipher might use a “key” of 3 to indicate shift by 3) As long as key remains secret, authentication is provided Problem is key distribution; if there are n users, we need n * (n-1)/2 unique keys

Symmetric and Asymmetric Encryption Systems Asymmetric requires two keys one of which is a “public key” The public key is used for encryption and the “private” key is used for decryption If there are n users, there are n public keys that everyone knows and n private keys known only to the user

Stream and Block Ciphers Stream ciphers – convert one symbol of plaintext immediately into a symbol of ciphertext Transformation depends on the plaintext symbol, the key, and the algorithm Error can affect all text after the error

Stream and Block Ciphers Block cipher encrypts a group of plaintext symbols as one block (e.g. columnar transposition) Stream Block Advantages Speed of transformation Low error propagation High diffusion Immunity to insertation of symbols disadvantages Low diffusion Susceptibility to malicious insertations and modifications Slowness of encryption Error propagation

Confusion and Diffusion Confusion – interceptor cannot predict what will happen to the ciphertext by changing one character in the plaintext Diffusion – information from single plaintext is distributed over the entire ciphertext

Cryptanalysis Ciphertext Only – requires analysis using probabilities, distributions, and characteristics of the available ciphertext, plus any publicly known information Full or Partial Plaintext – knows some plaintext and ciphertext (C & P in C = E(P) ); only needs to determine the algorithm; can use probable plaintext analysis Ciphertext of Any Plaintext – analyst can insert data into plaintext to be encrypted

Cryptanalysis Algorithm and Ciphertext – analyst runs the algorithm on massive amounts of plaintext to try and match one with the ciphertext and deduce the sender’s encryption key Ciphertext and Plaintext – try and determine the encryption key Weaknesses – cryptanalysis often succeeds because of human error and/or carelessness

Elementary Tips for Frequency Analysis Count frequencies j,k,q,x,z have frequency less than 1% e should have frequency greater than 10% (19% in German) Italian has 3 letters with frequency > 10% and 9 letters with frequency < 1% In English, look for repeated letters (ss, ee, tt, ff, ll, mm, oo) If ciphertext contains spaces, look for one, two, three letter words (a, I, of, to, in, it, is, be, as, at, so, we, he, by, or, on, do, if, me, my, up, an, go, no, us, am, the, and) Tailor table of frequencies to message you are trying to decipher (e.g. military messages omit pronouns and articles) Be willing to guess and use experience If the frequency of the ciphertext matches frequency table, the cipher is transpositon Taken from Appendix B of The Code Book by Simon Singh, Doubleday, 1999.