ELI PARAMETERS SPACE FROM ANALYTICAL MODEL C. Ronsivalle ELI meeting 21-03-2012.

Slides:



Advertisements
Similar presentations
Data analysis BTF 23 e 24 mag 05 T1 T2 500MeV electrons Repetition Rate 50 Hz Pulse Duration 1-10 ns Current/pulse 1 to 8 particles σ XY ~2mm Max Electronic.
Advertisements

Soft X-ray Self-Seeding
What is not yet possible?
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
BUILD-UP SIMULATIONS FOR DAFNE WIGGLER W/ ELECTRODES Theo Demma.
RF LINAC FOR GAMMA-RAY COMPTON SOURCES C. Vaccarezza on behalf of european collaboration.
ECLOUD Calculations of Coherent Tune Shifts for the April 2007 Measurements - This presentation limited to resolving drift/dipole weighting question -
ECLOUD Calculations of Coherent Tune Shifts for the April 2007 Measurements - Thanks to Marco for clarifying the drift/dipole weighting - - Thanks to Gerry.
27 June 2006Ken Moffeit1 Comparison of 2mrad and 14/20 mrad extraction lines Ken Moffeit ILC BDS 27 June 06.
K. Moffeit 6 Jan 2005 WORKSHOP Machine-Detector Interface at the International Linear Collider SLAC January 6-8, 2005 Polarimetry at the ILC Design issues.
DANTE vs. Witness Plate Radiation Temperature Comparison These calculations were performed by undergraduates David S. Conners, & Nate C. Shupe, under the.
F Specifications for the dark current kicker for the NML test facility at Fermilab S. Nagaitsev, M. Church, P. Piot, C.Y. Tan, J. Steimel Fermilab May.
Outline 1.ERL facility for gamma-ray production [A. Valloni] 2.ERL facility - Tracking Simulations [D. Pellegrini] 3.SC magnet quench tests [V. Chetvertkova]
EuroNNAc Workshop, CERN, May 2011 External Injection at INFN-LNF ( integrating RF photo-injectors with LWFA ) Luca Serafini - INFN/Milano High Brightness.
Linac e+ source for ILC, CLIC, SuperB, … Vitaly Yakimenko, Igor Pogorelsky November 17, 2008 BNL.
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
ASTRA Injector Setup 2012 Julian McKenzie 17/02/2012.
After Posipol In my opinion we are still too much dispersed. We have to re compact our community if we want to succeed in presenting a Compton version.
LSP modeling of the electron beam propagation in the nail/wire targets Mingsheng Wei, Andrey Solodov, John Pasley, Farhat Beg and Richard Stephens Center.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
SFLASH  SASE interference setup & optics rough estimation 1d estimation 3d estimation summary.
19 July 2006Ken Moffeit1 Comparison of 2mrad and 14/20 mrad extraction lines Ken Moffeit (via Eric Torrence) VLCW06 19 July 06.
X-RAY LIGHT SOURCE BY INVERSE COMPTON SCATTERING OF CSR FLS Mar. 6 Miho Shimada High Energy Research Accelerator Organization, KEK.
External Seeding Approaches: S2E studies for LCLS-II Gregg Penn, LBNL CBP Erik Hemsing, SLAC August 7, 2014.
RF source, volume and caesiated extraction simulations (e-dump)
ILC EXTRACTION LINE TRACKING Y. Nosochkov, E. Marin September 10, 2013.
W.S. Graves 2002 Berlin CSR workshop 1 Microbunching and CSR experiments at BNL’s Source Development Lab William S. Graves ICFA CSR Workshop Berlin, Jan.,
RFA Simulations Joe Calvey LEPP, Cornell University 6/25/09.
Undulator Based ILC positron source for TeV energy Wanming Liu Wei Gai ANL April 20, 2011.
ICFA Workshop on Future Light Source, FLS2012 M. Shimada A), T. Miyajima A), N. Nakamura A), Y. Kobayashi A), K. Harada A), S. Sakanaka A), R. Hajima B)
1 Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF.
C/S band RF deflector for post interaction longitudinal phase space optimization (D. Alesini)
Longitudinal aspects on injection and acceleration for HP-PS Antoine LACHAIZE On behalf of the HP-PS design team.
X-band Based FEL proposal
ELI-NP meeting, Magurele, Aug. 18th 2011 INFN Proposal for ELI-NP Compton Gamma-ray Source Luca Serafini – INFN Spokeperson for ELI-NP Motivations for.
Abstract: We present on overview of the STAR project (Southern european Thomson source for Applied Research), in progress at the Univ. of Calabria (Italy)
SL_THOMSON C. Vaccarezza on behalf of the SL_Thomson team.
ELI PHOTOINJECTOR PARAMETERS: PRELIMINARY ANALYSIS AND SIMULATIONS C. RONSIVALLE.
–11.03 Hawaii Multi bunch acceleration on LUCX system Ⅰ. LUCX project Ⅱ. Simulation results for Compton scattering Ⅲ. Calculation on beam loading.
Advanced Compton Sources (for Nuclear Photonics) Luca Serafini – INFN/Milan Physics and Technology of Compton/Thomson X/  rays Sources - weak Compton.
DEC  x / m  y / m quads undulators vertical correctors chicane 1chicane 2chicane 3.
I. Chaikovska and F. Zomer (LAL, Orsay, France)
Positron production rate vs incident electron beam energy for a tungsten target
Luca Serafini – INFN-Milan and University of Milan
Test of Hybrid Target at KEKB LINAC
Slice Parameter Measurements at the SwissFEL Injector Test Facility
Brainstorming on photon-photon scattering experiment
WP 9: Beam-driven plasma acc.
OTR based measurements for ELI-NP Gamma Beam Source
Luca Serafini – INFN-Milan and University of Milan
The SPARC_LAB Thomson source
17/10/2016 Reserch Activity Report 6D Phase Space Electron Beam Analysis And Optimization For Rf Linac Based Inverse Compton Scattering Radiation Sources.
A.S. Ghalumyan, V.T. Nikoghosyan Yerevan Physics Institute, Armenia

BC2 Commissioning Parameters
MIT Compact X-ray Source
F. Villa Laboratori Nazionali di Frascati - LNF On behalf of Sparc_lab
Compton effect and ThomX What possible future?
LCLS Commissioning Parameters
LCLS Commissioning Parameters
LHC (SSC) Byung Yunn CASA.
LCLS Commissioning Parameters
Modified Beam Parameter Range
Transverse coherence and polarization measurement of 131 nm coherent femtosecond pulses from a seeded FEL J. Schwenke, E. Mansten, F. Lindau, N. Cutic,
COMB beam: TSTEP simulations up to THz station
Achieving Required Peak Spectral Brightness Relative Performance for Four Undulator Technologies Neil Thompson WP5 – 20/03/19.
LCLS Commissioning Parameters
Low Energy Electron-Ion Collision
Proposal for Smith-Purcell radiation experiment at SPARC_LAB
Beam Tests data vs Matlab simulations
Presentation transcript:

ELI PARAMETERS SPACE FROM ANALYTICAL MODEL C. Ronsivalle ELI meeting

KEY FIGURES OF SERAFINI ANALYTICAL MODEL Assumptions with

ELI SPECIFICATIONS 1212 From requirement #2

INPUT DATA FOR THE MATLAB PROGRAM Laser pulse energy U=1 J Laser photon energy h =2.4 eV  = Collision angle  =0 Electron beam energy=360 MeV (first ELI ip)  t=4 ps  t=5 ps HYBRID scheme FULL-C band Wp1 point Q=250pC,  /  =0.6*10 -3

Q=250pC,  /  =0.6*10 -3  t=4 ps E=360 MeV Max SPDopt values  x values for max SPDopt SPD is per shot

E-BEAM PARAMETERS SPACE: ISO SPECTRAL DENSITY CURVES The red point ( ) corresponds to wp1 for the hybrid scheme Contour lines plot for Q=250 pC and  t=4 ps. The iso spectral density curves correspond to the peak values on the curves SPDopt vs  x. For frip=100 Hz and SPDmax=10 4 The region below curve 100 defines the parameters space for nrf=1 The region between curves 100 and 50 defines the parameters space for nrf=2 and so on……. nrf=required number of bunches

E-BEAM PARAMETERS SPACE: ISO SPECTRAL DENSITY CURVES The red point ( ) corresponds to wp1 for the hybrid scheme Contour lines plot for Q=250 pC and  t=4 ps. The iso spectral density curves correspond to  x=20 µm 23 means nrf=5

Q=250pC,  /  =0.6*10 -3  t=4 ps E=360 MeV  =0 Q=250pC,  /  =0.6*10 -3  t=4 ps E=720 MeV  =0 COMPARISON MeV

SPD ~23 nrf=5 SPD ~5.7 nrf= MeV 720 MeV

APPLICATION TO SOME OF START-TO-END DATA (wp1-ITERATION#2 ON HYBRID SCHEME)

Summary 360MeV wpQ i pC ε nx µ-rad ε ny µ-rad σ x µm σ y µm σ z µm σ δ RFD1 MV RFD2 MV collx µm colly µm Q f pC E f MeV φ2°φ2° 1A B B B C. Vaccarezza

wpQ i pC ε nx µ-rad ε ny µ-rad σ x µm σ y µm σ z µm σ δ RFD1 MV RFD2 MV collx µm colly µm Q f pC E f MeV φ2°φ2° 1A nrf=2 nrf=7 Limit :laser spot size not beam properties nrf=7 SPD (per shot)~14.5

nrf=6 nrf=7 Q i pC ε nx µ-rad ε ny µ-rad σ x µm σ y µm σ δ Q f pC E f MeV nrf=2 SPD (per shot)~17 SPD (per shot)~15.5

Effect of a collision angle  =4° in case 1 wpQ i pC ε nx µ-rad ε ny µ-rad σ x µm σ y µm σ z µm σ δ Q f pC E f MeV 1A nrf=4 nrf=10 SPD (per shot)~11

Summary 720MeV wpQ i pC ε nx µ-rad ε ny µ-rad σ x µm σ y µm σ z µm σ δ RFD1 MV RFD2 MV collx µm colly µm Q f pC E f MeV φ2°φ2° 1A B B B C. Vaccarezza

wpQ i pC ε nx µ-rad ε ny µ-rad σ x µm σ y µm σ z µm σ δ Q f pC E f MeV 1A Nrf=21 Nrf=6  x<15 µm nrf<10  t=4 ps,  =0 Best wp1 at high energy SPD (per shot)~4.7

Effect of a collision angle  =4° in this case Nrf=13 Nrf=29 SPD (per shot)~3.5  t=4 ps