Andrew Walsh, James Cook University Narrated by James Green (CASS) – thanks Jimi! (Psshhh aaahhh sssss push it) The Case for High Frequency Line Observations.

Slides:



Advertisements
Similar presentations
High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
Advertisements

Nuria Marcelino (NRAO-CV) Molecular Line Surveys of Dark Clouds Discovery of CH 3 O.
Methanol maser polarization in W3(OH) Lisa Harvey-Smith Collaborators: Vlemmings, Cohen, Soria-Ruiz Joint Institute for VLBI in Europe.
Ammonia and CCS as diagnostic tools of low-mass protostars Ammonia and CCS as diagnostic tools of low-mass protostars Itziar de Gregorio-Monsalvo (ESO.
The Galactic Center: Molecular Line Mapping with Broadband Spectrometers Jürgen Ott ESO 3D Meeting 11 June 2008 The Galactic Center: Molecular Line Mapping.
A MOPRA CS(1-0) demonstration survey of the Galactic plane G. Fuller, N. Peretto, L. Quinn (University of Manchester UK), J. Green (ATNF ) All dust continuum.
Studying circumstellar envelopes with ALMA
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
Loránt Sjouwerman, Ylva Pihlström & Vincent Fish.
21 November 2002Millimetre Workshop 2002, ATNF First ATCA results at millimetre wavelengths Vincent Minier School of Physics University of New South Wales.
Portrait of a Forming Massive Protocluster: NGC6334 I(N) Todd Hunter (NRAO/North American ALMA Science Center) Collaborators: Crystal Brogan (NRAO) Ken.
Constraining the Physics of Star Formation in Galaxies Using the JVLA and GBT Amanda Kepley NRAO - GB.
The Green Bank Telescope a powerful instrument for enhancing ALMA science Unblocked Aperture Low sidelobes gives high dynamic range Resistance to Interference.
Radio Astronomy And The Spiral Structure Of The Milky Way Jess Broderick Supervisor: Dr George Warr.
Millimeter Spectroscopy Joanna Brown. Why millimeter wavelengths? >1000 interstellar & circumstellar molecular lines Useful for objects at all different.
Herschel HIFI | Jürgen Stutzki for the HIFI team | Universität zu Köln| Pag. 1 Herschel HIFI: the Heterodyn Instrument for the Far-Infrared –PI-Institut:
Submillimeter Astronomy in the era of the SMA, 2005, Cambridge, MA Observations of Extragalactic Star Formation in [CI] (370  m) and CO J=7-6 T. Nikola.
Jeff Mangum (NRAO) Jeremy Darling (CU Boulder) Karl Menten (MPIfR Bonn) Christian Henkel (MPIfR Bonn) Meredith MacGregor (NRAO / Harvard University) Brian.
STAR FORMATION STUDIES with the CORNELL-CALTECH ATACAMA TELESCOPE Star Formation/ISM Working Group Paul F. Goldsmith (Cornell) & Neal. J. Evans II (Univ.
Definitive Science with Band 3 adapted from the ALMA Design Reference Science Plan (
Á L V A R O S Á N C H E Z M O N G E B A R C E L O N A - N O V E M B E R 23, 2006 Centimeter and Millimeter Emission from Selected High-Mass Star-Forming.
Variable SiO Maser Emission from V838 Mon Mark Claussen May 16, 2006 Nature of V838 Mon and its Light Echo.
Class I methanol masers in the regions of high-mass star-formation Max Voronkov Software Scientist – ASKAP In collaboration with: Caswell J.L., Ellingsen.
Millimetre Astronomy with the Australia Telescope Max Voronkov Software Scientist – ASKAP 12 th June 2009.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
MALT 90 Millimetre Astronomy Legacy Team 90 GHz survey
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
What is Radio Astronomy? MIT Haystack Observatory This material was developed under a grant from the National Science Foundation.
Masers observations of Magnetic fields during Massive Star Formation Wouter Vlemmings (Argelander-Institut für Astronomie, Bonn) with Gabriele Surcis,
The Canadian Galactic Plane Survey Mapping the Ecology Of the Milky Way Galaxy.
CO, CS or other molecules? Maria Cunningham, UNSW.
10 January 2006AAS EVLA Town Hall Meeting1 The EVLA: A North American Partnership The EVLA Project on the Web
Molecular Gas and Dust in SMGs in COSMOS Left panel is the COSMOS field with overlays of single-dish mm surveys. Right panel is a 0.3 sq degree map at.
The Canadian Galactic Plane Survey What is the CGPS? Status and some results What’s next? Mapping the Ecology of the Milky Way Galaxy.
… and AGN Marcello Giroletti Dipartimento di Astronomia, UniBO Istituto di Radioastronomia, INAF.
HOPS – The H 2 O southern Galactic Plane Survey Image Courtesy: Cormac Purcell.
Star Formation in our Galaxy Dr Andrew Walsh (James Cook University, Australia) Lecture 1 – Introduction to Star Formation Throughout the Galaxy Lecture.
Galaxies Astronomy 115. First, which of the following is a galaxy? Open cluster Globular cluster Nebula Interstellar medium (gas and dust) Supernova remnant.
The Incredible 6.7 GHz Methanol Masers: A key to understanding high-mass star formation. Jimi Green (for Gary Fuller) CSIRO Astronomy & Space Science,
VLASS – Galactic Science Life cycle of star formation in our Galaxy as a proxy for understanding the Local Universe legacy science Infrared GLIMPSE survey.
GASKAP The Galactic ASKAP Survey On behalf of the GASKAP team Dr Andrew Walsh.
SPIRE-FTS spectrum of Arp 220, Mrk 231 and NGC Bright CO (J = 4-3 to J = 13-12), water, and atomic fine-structure line transitions are labeled. The.
The Role of Parkes in Southern Maser VLBI Simon Ellingsen University of Tasmania.
Masers as evolutionary tracers of high-mass star formation Shari BreenSimon Ellingsen Bolton FellowJames Caswell 15th September 2010.
Quiz 3 Briefly explain how a low-mass star becomes hot enough to settle on the main-sequence. Describe what is solar weather and list two ways in which.
MALT Survey meeting / Masers at 7 and 3mm Max Voronkov Software Scientist – ASKAP 04 th June 2009.
CARMA Large Area Star-formation SurveY  Completing observations of 5 regions of square arcminutes with 7” angular resolution in the J=1-0 transitions.
ASTROCHEMISTRY IN THE SUBMM DOMAIN Bérengère Parise With kind inputs from my MPIfR colleagues: A. Belloche, S. Leurini, P. Schilke, S. Thorwirth, F. van.
Supervisors: Maria Cunningham (UNSW), James Urquhart (CSIRO) Michael Burton (UNSW) Collaborators: Nadia Lo (UNSW/CSIRO), Bhaswati Mookerjea (Tata Institute)
Seeing Stars with Radio Eyes Christopher G. De Pree RARE CATS Green Bank, WV June 2002.
Methanol maser and 3 mm line studies of EGOs Xi Chen (ShAO) 2009 East Asia VLBI Workshop, March , Seoul Simon Ellingsen (UTAS) Zhi-Qiang Shen.
Large Area Surveys - I Large area surveys can answer fundamental questions about the distribution of gas in galaxy clusters, how gas cycles in and out.
Masers Surveys with Mopra: Which is best 7 or 3 mm? Simon Ellingsen, Maxim Voronkov & Shari Breen 3 November 2008.
Using masers as evolutionary probes in the G333 GMC (as well as some follow up work) Shari Breen, Simon Ellingsen, Ben Lewis, Melanie Johnston-Hollitt,
Methanol Masers in the NGC6334F Star Forming Region Simon Ellingsen & Anne-Marie Brick University of Tasmania Centre for Astrophysics of Compact Objects.
Jet Propulsion Laboratory
Chapter 11 The Interstellar Medium
Multiple YSOs in the low-mass star-forming region IRAS CONTENT Introduction Previous work on IRAS Observations Results Discussion.
Radio Galaxies Part 3 Gas in Radio galaxies. Why gas in radio galaxies? Merger origin of radio galaxies. Evidence: mainly optical characteristics (tails,
GBT Future Instrumentation Workshop Fixing the frequency coverage hole in C-Band Jagadheep D. Pandian Cornell University.
Early O-Type Stars in the W51-IRS2 Cluster A template to study the most massive (proto)stars Luis Zapata Max Planck Institut für Radioastronomie, GERMANY.
Possible Future Spectroscopic Star Formation Surveys James Di Francesco (National Research Council Herzberg)
1)The recipe of (OB) star formation: infall, outflow, rotation  the role of accretion disks 2)OB star formation: observational problems 3)The search for.
Lecture 3 – High Mass Star Formation
Portrait of a Forming Massive Protocluster: NGC6334 I(N)
Filamentary Structures Traced by IRDCs
The MALT90 survey of massive star forming regions
Signposts of massive star formation
107/108 GHz methanol masers with ALMA
Presentation transcript:

Andrew Walsh, James Cook University Narrated by James Green (CASS) – thanks Jimi! (Psshhh aaahhh sssss push it) The Case for High Frequency Line Observations with Parkes

Early stages of planning to make Parkes future operations more streamlined Suggestion to replace receiver fleet with two wideband receivers Nominal frequency range is 0.7 – 4 GHz and 4 – 24 GHz Possible/likely use of Phased Array Feeds (PAFs) – more likely for low frequency Receiver Rationalisation on Parkes

Fast efficient mapping became available partly due to the broadband receiver and backend. Survey multiple spectral lines simultaneously Key to HOPS: observe during summer months  No great demand for Mopra (General feeling the time was unusable at 12mm)  Testing showed Mopra usable any time when not cloudy  Take a hit in sensitivity, but main aim is to look for bright lines CONCLUSION: You can do great science if you… Push it!!! The (relevant) Story of HOPS

A quick example: Galactic Longitude (degrees) H 2 O masers NH 3 (1,1) The CMZ shows copious NH 3 emission, but not many H 2 O masers  Significant deficit of ongoing star formation

The Understated Usefulness of Water and Ammonia Arguably, the two most important spectral transitions for radio astronomy are H I and CO J = N – N-1, mainly because they are ubiquitous. Arguably, the second two most important spectral transitions for radio astronomy are the H 2 O maser at 22 GHz and the NH 3 inversion transitions at 24+ GHz. Both H 2 O and NH 3 are ubiquitous, but perhaps not as ubiquitous as H I and CO (sububiquitous?)

The Understated Usefulness of Water and Ammonia H 2 O masers are found in a wide variety of situations: Both low- and high-mass star formation within the Milky Way (typically trace outflows) Evolved stars such as post-AGB stars (again tracing outflows) Megamasers around the centres of other galaxies H 2 O masers can be used for a wide variety of diagnostics: Studying outflows in star formation and evolved stars – particularly high velocity outflows Constraining the ages of high-mass star-forming regions Study of circumnuclear disks in other galaxies LBA high resolution studies

The Understated Usefulness of Water and Ammonia NH 3 inversion transitions are particularly useful because: Multiple transitions are close together in frequency that probe a wide range of densities (few × 10 3  10 5 cm -3 ) and temperatures (15 – 400 K) Lower transitions like NH 3 (1,1) and (2,2) probe currently modelled conditions for star formation (where you see ammonia, you *should* see star formation) Lower transitions show hyperfine structure, which can be used to more reliably measure column densities. The NH 3 molecule is particularly useful because: It is robust against freeze out in coldest, densest regions (pre-stellar clouds) It does not appear in outflows (consumed by outflow tracers CO and HCO + )  NH 3 is the most reliable tracer of dense, quiescent, star-forming gas

A Parkes Survey of the Milky Way in Water and Ammonia HOPS is not sensitive enough to detect typical clouds right across the Galaxy Common spectral lines like H I and CO can be detected across the Galaxy. But they trace low density gas not necessarily associated with star formation, as well as gas in inter-spiral arm regions, making Galactic structure difficult to discern. A sensitive Parkes survey for water masers and ammonia would use both molecules to map the Galactic structure in star-forming gas more clearly than ever before! Note that only Parkes can see the southern Galactic plane and can do such a survey!

A Parkes Survey of the Milky Way in Water and Ammonia What is needed? 1.Make sure that any high frequency receiver includes the water and ammonia line frequencies. H 2 O maser GHz NH 3 (1,1) GHz NH 3 (2,2) GHz NH 3 (3,3) GHz NH 3 (4,4) GHz NOTE: These frequencies are a no-brainer, given the current rough specs BUT PLEASE DON’T FORGET THEM!!!

A Parkes Survey of the Milky Way in Water and Ammonia What is needed? 2.To efficiently survey the Galaxy, a PAF is needed: A 10×10 array will survey the Galaxy with 20× the sensitivity of HOPS in ~2000 hours The benefits of such a survey will be far-reaching in the fields of understanding star formation both within our Galaxy and other galaxies, as well as understanding the structure of the Milky Way.  Developing such a PAF may be challenging, but this is where CASS needs to Push It!!!

Summary A Parkes high frequency receiver should be designed to include spectral lines of water and ammonia. A PAF at high frequency will bring great benefits to studying star formation and g(G)alactic structure Salt-n-Pepa’s here!