Combined Cycle Theory Dalton Plant Ouachita Plant.

Slides:



Advertisements
Similar presentations
Thermodynamic Analyses Gas Turbine Power Plant
Advertisements

Heat Engines A Brief Review of Thermodynamics Thermodynamics  The science of thermodynamics deals with the relationship between heat and work.  It.
A novel IGCC system with steam injected H2/O2 cycle and CO2 recovery P M V Subbarao Professor Mechanical Engineering Department Low Quality Fuel but High.
THE CARNOT CYCLE AND ITS VALUE IN ENGINEERING The Carnot cycle is composed of four totally reversible processes: isothermal heat addition, isentropic.
Reading: Cengel & Boles, Chapter 9
ENERGY CONVERSION ES 832a Eric Savory Lecture 12 – Large-scale plants Department of Mechanical and Material Engineering.
Vapor and Combined Power Cycles
9 CHAPTER Vapor and Combined Power Cycles.
Department of Mechanical Engineering ME 322 – Mechanical Engineering Thermodynamics Lecture 25 Comparison to Carnot’s Heat Engine Effects of Boiling and.
Chapter 1 VAPOR AND COMBINED POWER CYCLES
Reheat cycle.
Lecture 11. Real Heat Engines and refrigerators (Ch. 4) Stirling heat engine Internal combustion engine (Otto cycle) Diesel engine Steam engine (Rankine.
“Energy Efficiency Guide for Industry in Asia”
ENTC 303: Fluid Mechanics and Fluid Power
Diesel / Brayton Cycles
Vapor Power Cycles Thermodynamics Professor Lee Carkner Lecture 19.
Vapor and Combined Power Cycles
Lec 23: Brayton cycle regeneration, Rankine cycle
POWER GENERATION TECHNOLOGIES
Combined_Cycle_Power_Plant Prepared by: Nimesh Gajjar.
EGR 334 Thermodynamics Chapter 9: Sections 7-8
Thermal_Power_Plant_2 Prepared by: NMG
Power Generation Cycles Vapor Power Generation The Rankine Cycle
Gas Turbines By: Katie Steddenbenz.
EGR 334 Thermodynamics Chapter 9: Sections 5-6
Lesson 7 FIRST LAW OF THERMODYNAMICS STATE the First Law of Thermodynamics. Using the First Law of Thermodynamics, ANALYZE an open system including all.
Vapor and Combined Power Cycles (2)
Unit 4 Exercise – Gas Vapour and Combined Power Cycle
Lecture Objectives: Continue with power generation Learn basics about boilers and furnaces.
Energy and the Environment Spring 2014 Instructor: Xiaodong Chu : Office Tel.: Mobile:
R. Shanthini 15 Aug 2010 “In the end we will conserve only what we love; we will love only what we understand; and we will understand only what we have.
Lesson 8 SECOND LAW OF THERMODYNAMICS
Plant Utility System (TKK-2210) 14/15 Semester 4 Instructor: Rama Oktavian Office Hr.: M-F
1 FUNDAMETALS OF ENERGY CONVERSIONS Doc. Ing. Tomáš Dlouhý, CSc.
STEAM TURBINE POWER CYCLES. The vast majority of electrical generating plants are variations of vapour power plants in which water is the working fluid.
Objectives -Discuss Final Project -
GAS TURBINE POWER PLANT
ENGR 2213 Thermodynamics F. C. Lai School of Aerospace and Mechanical Engineering University of Oklahoma.
Unit 2 -Gas And Diesel Power Plants
DRAFT. Introduction  Mechanical Power Reciprocating Engines Turbines Turbines are compact machines (high power to weight ratio, having less balancing.
Lecture Objectives: Finish with absorption cooling Power generation Rankine cycles Connect power generation with heating and cooling –CHP –CCHP.
Prof. R. Shanthini Nov 12, An engineering example for unsustainable development.
The Rankine Cycle: An Alternate Ideal Thermodynamic Model P M V Subbarao Professor Mechanical Engineering Department IIT Delhi A Feasible Mathematical.
ENGR 2213 Thermodynamics F. C. Lai School of Aerospace and Mechanical Engineering University of Oklahoma.
1. FUNDAMENTALS OF POWER PLANTS
Heat Engines A gasoline engine is a form of a heat engine, e.g. a 4-stroke engine INTAKE stroke: the piston descends from the top to the bottom of the.
Chapter 8. Production of Power from Heat 고려대학교 화공생명 공학과.
1 3E-03 Fire Syringe RAPID COMPRESSION IS ADIABATIC GIVING RAPID RISE OF AIR TEMPERATURE IN THE CHAMBER WHICH EXCEEDS THE IGNITION TEMPERATURE OF THE FLAMMABLE.
Brayton cycle with intercooling and reheating HARIKISHNAN PILLAI ENGG THERMODYNAMICS.
Gas Turbine Power Plant
Chapter 10 VAPOR AND COMBINED POWER CYCLES
Chapter 10 VAPOR AND COMBINED POWER CYCLES
Vapor ,Gas and Combined Power Cycles
Objectives Evaluate the performance of gas power cycles for which the working fluid remains a gas throughout the entire cycle. Analyze vapor power.
BRAYTON CYCLE AND EFFECT OF INTERCOOLING , REHEAT AND REGENRATION
Thermodynamics Cycles.
CACTUS MOON EDUCATION, LLC
Lecture Objectives: Answer question related to Project 1 assignment
Simple Thermal Power Plant
TOPIC:- VAPOUR CYCLES CREATED BY:
Power and Refrigeration Systems
VAPOR & COMBINED POWER CYCLES
Power Plant Technology Combined Cycle and Renewable Energy Power Systems (Assignment 1) by Mohamad Firdaus Basrawi, Dr. (Eng) Mechanical Engineering Faculty.
Power Plant Technology Combined Cycle and Renewable Energy Power Systems (Lecture 1) by Mohamad Firdaus Basrawi, Dr. (Eng) Mechanical Engineering Faculty.
Power Plant Technology Steam and Gas Cycle Power Plant (Assignment 2)
Chapter 8 Production of Power from Heat.
9 CHAPTER Vapor and Combined Power Cycles.
Lecture Objectives: Finish with Sorption cooling
Combined Cycle Power Plants
Presentation transcript:

Combined Cycle Theory Dalton Plant Ouachita Plant

What is a “Combined Cycle” Power Plant? Uses 2 thermodynamic cycles to generate electricity… Brayton - Gas Turbine & Rankine - Steam Plant ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ The Brayton cycle gets its heat from burning the fuel. The Rankine cycle uses heat rejected from the Brayton cycle.

Combined Cycle Designation S207FA Steam and Gas (STAG) The Number of CT’s (and HRSG’s) per Steam Turbine Model Series MS6001FA MS7001FA MS9001FA MS7001FB MS9001FB MS9001H MS7001H ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Brayton Cycle ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Ideal Brayton Cycle 3 4 1 2 Compressor Turbine 1 2 3 4 Fresh Air Exhaust Combustion Fuel 1 2 3 4 Entropy S Temperature q in q out Const. p Generation Heat Rejected 1 2 3 4 Pressure Specific Volume v q in q out Const. s Work Out A Brayton Cycle is an all gas cycle where combustion and exhaust take place at different, but constant pressures. ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Ideal Brayton Cycle Efficiency The theoretical maximum Brayton Cycle thermal efficiency is a function of: 1 2 3 4 Entropy S Temperature q in q out Const. p Generation Heat Rejected The Pressure ratio - Ratio of Combustion to Atmospheric Pressure The maximum temperature achieved or the maximum temperature that the machine can withstand Ambient temperature Expressed as: th = 1 - rp (1-k)/k Where: rp = Pressure Ratio k = specific heat ratio of the working fluid ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Typically 30% - 40%

Perryville Simple Cycle GT Inlet Transformer Generator Gas Turbine Exhaust Stack

Rankine Cycle ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Rankine Cycle (Steam Side) Entropy (Btu/#/degF) Boiling Condensation Pump FW Heating LPT Reheating HPT Absolute Temperature (degF) Heat Rejected to Condenser Electrical Generation LPT Exhaust enters condenser A Rankine Cycle is a condensing cycle. In our case, steam is condensed. Heat is added independent of pressure. Superheating ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Ideal Rankine Cycle Efficiency Entropy (Btu/#/degF) Boiling Condensation Pump FW Heating LPT Reheating HPT Absolute Temperature (degF) Heat Rejected to Condenser Electrical Generation LPT Exhaust enters condenser Superheating The theoretical maximum Rankine Cycle thermal efficiency is a function of: Boiler pressure The max. temperature achieved (the max. temperature the machine can withstand) Ambient temperature Expressed as: th = (Wout - Win) / Qin Where: Wout = work done by the system, Win = work done on the system, and Qin = heat added ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Typically 30% - 40%

Combined Cycle ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Combined Cycle Brayton Rankine ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

The Concept Generator Intake Fuel Combustion Turbine Heat Recovery Steam Generator Steam Turbine Cooling Tower A Combined Cycle Power Plant has One or more Gas Turbines with Electrical Generators and One or more Steam Turbines with Electrical Generators A Combined Cycle Power Plant produces electric power from fossil fuel using: Gas Turbine, supplying turbine exhaust heat to Heat Recovery Steam Generator, supplying steam to Steam Turbine ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Perryville Combined Cycle Plant

For any system……. Q – E = W Heat In – Energy Change = Work Out Combined Cycle For any system……. Q – E = W Heat In – Energy Change = Work Out WORK AND ENERGY ARE INTERCHANGEABLE ! To a power plant this means: Heat in from fuel BTU/Hr Electrical Generation MW Heat rejected MW - = ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

So why use a Combined Cycle? ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Because it increases overall efficiency! Fuel Energy In GT Gen. GT Waste Heat (HRSG Energy In) ST Gen. ST Waste Heat Total Gen. Out the Stack CT Efficiency = ~ 35% CT Gen. Fuel Energy In ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ ST Efficiency = ~ 35% ST Gen. HRSG Energy In Overall Efficiency = ~ 58% Total Gen. Total energy In OA = CT + ST - CT ST

Why use a Combined Cycle? Let’s put in numbers… 907 MW (3 Billion BTU/Hr) Fuel 330 MW 577 MW CT 190 MW 349 MW ST 520 MW Total 38 MW CT Efficiency = ~ 36% 330 MW 907 MW ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ ST Efficiency = ~ 33% 190 MW 577 MW Overall Efficiency = ~ 57% 520 MW 907 MW OA = .36 + .33 - .36 x .33 = .57 = 57%

Combined Cycle 349 MW 38 MW 190 MW 907 MW 330 MW 577 MW ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 330 MW 577 MW

GT/ST Combined Cycle Advantages: Disadvantages: Short Project Schedules ~ 24 Months High Thermal Efficiency ~ almost 60% Uses multiple fuels - Oil or Gas Quick Startup - 1 to 5 hours Low Environmental Emissions per kW Operating Flexibility – Run CT’s alone Easier to Operate and Maintain High Availability ~ 90% ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Disadvantages: Burns “expensive” fuel.

Questions? ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________