LECTURE TWELVE Decision-Making UNDER UNCERTAINITY.

Slides:



Advertisements
Similar presentations
Decision Theory.
Advertisements

Chapter 3 Decision Analysis.
1 1 Slide © 2001 South-Western College Publishing/Thomson Learning Anderson Sweeney Williams Anderson Sweeney Williams Slides Prepared by JOHN LOUCKS QUANTITATIVE.
20- 1 Chapter Twenty McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
Introduction to Decision Analysis
1 1 Slide © 2004 Thomson/South-Western Payoff Tables n The consequence resulting from a specific combination of a decision alternative and a state of nature.
Chapter 18 Statistical Decision Theory Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 7 th.
Decision Theory.
Copyright 2009 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Operations Management - 6 th Edition Chapter 1 Supplement Roberta.
Chapter 21 Statistical Decision Theory
Chapter 3 Decision Analysis.
Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter Twenty An Introduction to Decision Making GOALS.
Managerial Decision Modeling with Spreadsheets
2000 by Prentice-Hall, Inc1 Supplement 2 – Decision Analysis A set of quantitative decision-making techniques for decision situations where uncertainty.
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin An Introduction to Decision Making Chapter 20.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
DSC 3120 Generalized Modeling Techniques with Applications
Dr. C. Lightner Fayetteville State University
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or.
Chapter 7 Decision Analysis
Slides prepared by JOHN LOUCKS St. Edward’s University.
Chapter 4 Decision Analysis.
1 1 Slide Decision Analysis n Structuring the Decision Problem n Decision Making Without Probabilities n Decision Making with Probabilities n Expected.
Part 3 Probabilistic Decision Models
1 1 Slide Decision Analysis Professor Ahmadi. 2 2 Slide Decision Analysis Chapter Outline n Structuring the Decision Problem n Decision Making Without.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 18-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
Topic 2. DECISION-MAKING TOOLS
Business 260: Managerial Decision Analysis
Decision Making Under Uncertainty and Under Risk
Decision analysis: part 1 BSAD 30 Dave Novak Source: Anderson et al., 2013 Quantitative Methods for Business 12 th edition – some slides are directly from.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Decision Analysis Introduction Chapter 6. What kinds of problems ? Decision Alternatives (“what ifs”) are known States of Nature and their probabilities.
© 2008 Prentice Hall, Inc.A – 1 Operations Management Module A – Decision-Making Tools PowerPoint presentation to accompany Heizer/Render Principles of.
Operations Management Decision-Making Tools Module A
CD-ROM Chap 14-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition CD-ROM Chapter 14 Introduction.
1 1 Slide © 2005 Thomson/South-Western EMGT 501 HW Solutions Chapter 12 - SELF TEST 9 Chapter 12 - SELF TEST 18.
Chapter 8 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with Probabilities n Risk Analysis and Sensitivity.
Module 5 Part 2: Decision Theory
“ The one word that makes a good manager – decisiveness.”
An Introduction to Decision Theory (web only)
An Introduction to Decision Theory
1 1 Slide Decision Theory Professor Ahmadi. 2 2 Slide Learning Objectives n Structuring the decision problem and decision trees n Types of decision making.
To Accompany Russell and Taylor, Operations Management, 4th Edition,  2003 Prentice-Hall, Inc. All rights reserved. Supplement S2 Decision Analysis To.
Chapter 9 - Decision Analysis - Part I
Decision Analysis Mary Whiteside. Decision Analysis Definitions Actions – alternative choices for a course of action Actions – alternative choices for.
Welcome Unit 4 Seminar MM305 Wednesday 8:00 PM ET Quantitative Analysis for Management Delfina Isaac.
Decision Theory McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Models for Strategic Marketing Decision Making. Market Entry Decisions To enter first or to wait Sources of First-Mover Advantages –Technological leadership.
Fundamentals of Decision Theory Chapter 16 Mausam (Based on slides of someone from NPS, Maria Fasli)
Decision Theory McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Decision Analysis.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Chapter 12 Decision Analysis. Components of Decision Making (D.M.) F Decision alternatives - for managers to choose from. F States of nature - that may.
DECISION MODELS. Decision models The types of decision models: – Decision making under certainty The future state of nature is assumed known. – Decision.
Chap 18-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 18 Introduction to Decision Analysis.
Chapter 8 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with Probabilities n Risk Analysis and Sensitivity.
1 1 Slide © 2005 Thomson/South-Western Chapter 13 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with.
QUANTITATIVE TECHNIQUES
Chapter Twenty McGraw-Hill/Irwin
Investment risks Investment decisions and strategies.
Welcome to MM305 Unit 4 Seminar Larry Musolino
Slides 8a: Introduction
Chapter 19 Decision Making
Operations Management
نظام التعليم المطور للانتساب
نظام التعليم المطور للانتساب
Decision Analysis.
Making Decisions Under Uncertainty
Presentation transcript:

LECTURE TWELVE Decision-Making UNDER UNCERTAINITY

Introduction Decision analysis provides a framework and methodology for rational decision making when the outcomes are uncertain. Example: A company plans to determine the best location to startup a new plant from a choice of several locations. Each location offers a different cost scenario. Decision Analysis techniques can be used to determine the best decision.

Payoff Table States of Nature refer to future events which may occur and the values in a Payoff Table refer to either Profit or Cost. Example: s1, s2 & s3 could refer to possible scenarios (i.e. Moderate, Strong & Weak market demand) States of Nature s1 s2 s3 d1 4 4 -2 Decisions d2 0 3 -1 d3 1 5 -3

Simple Decision Making without Probabilities Three commonly used criteria for decision making when probability information regarding the likelihood of the states of nature is unavailable are: the Optimistic approach (Maximax or Minimin) the Conservative approach (Maximin or Minimax) the Minimax Regret approach.

Optimistic Approach The optimistic approach would be used by an optimistic decision maker. The decision with the largest possible payoff is chosen. If the payoff table was in terms of costs, the decision with the lowest cost would be chosen.

Example: Optimistic Approach Consider the following problem with three decision alternatives and three states of nature with the following payoff table representing profits: States of Nature s1 s2 s3 d1 4 4 -2 Decisions d2 0 3 -1 d3 1 5 -3

Example: Optimistic Approach The Optimistic Approach is to make decision based on the maximum of the largest profits. For each decision, d, the largest profits are identified (i.e. 4, -1 & 5) Formula Spreadsheet

Example: Optimistic Approach Solution Spreadsheet

Conservative Approach The conservative approach would be used by a conservative decision maker. For each decision the minimum payoff is listed and then the decision corresponding to the maximum of these minimum payoffs is selected. If the payoff was in terms of costs, the maximum costs would be determined for each decision and then the decision corresponding to the minimum of these maximum costs is selected.

Example: Conservative Approach Based on the same table with three decision alternatives and three states of nature with the following payoff table representing profits: States of Nature s1 s2 s3 d1 4 4 -2 Decisions d2 0 3 -1 d3 1 5 -3

Example: Conservative Approach Formula Spreadsheet

Example: Conservative Approach Solution Spreadsheet

Minimax Regret Approach The minimax regret approach requires the construction of a regret table or an opportunity loss table. This is done by calculating for each state of nature the difference between each payoff and the largest payoff for that state of nature. Then, using this regret table, the maximum regret for each possible decision is listed. The decision chosen is the one corresponding to the minimum of the maximum regrets.

Example: Minimax Regret Approach Compute a regret table by subtracting each payoff in a column from the largest payoff in that column. Add a Max Regret Col and make decision based on the Minimum of Maximum Regret. Example: 4, 0, 1 is subtracted by 4 giving OL 0, 4, 3, etc. s1 OL s2 OL s3 OL Max Regret d1 4 0 4 1 -2 1 1 d2 0 4 3 2 -1 0 4 d3 1 3 5 0 -3 2 3

Example: Minimax Regret Approach Formula Spreadsheet

Example: Minimax Regret Approach Solution Spreadsheet

Decision Making with Probabilities Expected Value Approach If probabilities regarding the states of nature is available, we may use the expected value (EV) approach. Decision is based on maximising EV. The expected value (EV) of decision alternative di is defined as: where: N = the number of states of nature P(sj ) = the probability of state of nature sj Vij = the payoff corresponding to decision alternative di and state of nature sj

Example: Expected Value Approach ABC Restaurant Average Number of Customers Per Hour s1 = 80 s2 = 100 s3 = 120 Model A $10,000 $15,000 $14,000 Model B $ 8,000 $18,000 $12,000 Model C $ 6,000 $16,000 $21,000 Probability 0.4 0.2 0.4 Given s1, s2 & s3 have the probabilities: 0.4, 0.2 & 0.4

Example: Expected Value Approach Formula Spreadsheet

Example: Expected Value Approach Solution Spreadsheet

Expected Value of Perfect Information The expected value of perfect information (EVPI) is the increase in the expected profit that would result if one knew with certainty which state of nature would occur. EVPI = EVwPI – Max EV where EVwPI = ∑ Pi * Max Vi where Vi is the payoffs and EVwPI = Expected Value with Perfect Information

Expected Value of Perfect Information Spreadsheet

Decision Tree Payoffs 10,000 2 15,000 d1 14,000 8,000 d2 1 3 18,000 d3 Average Number of Customers Per Hour s1 = 80 s2 = 100 s3 = 120 Model A $10,000 $15,000 $14,000 Model B $ 8,000 $18,000 $12,000 Model C $ 6,000 $16,000 $21,000 Probabilities 0.4 0.2 0.4 Payoffs s1 .4 10,000 s2 .2 2 15,000 s3 .4 d1 14,000 .4 s1 8,000 d2 1 3 s2 .2 18,000 d3 s3 .4 12,000 s1 .4 6,000 4 s2 .2 16,000 s3 .4 21,000

Decision Tree d1 2 Model A Model B d2 Choose the model with largest EV, Model C. EMV = .4(10,000) + .2(15,000) + .4(14,000) = $12,600 d1 2 Model A EMV = .4(8,000) + .2(18,000) + .4(12,000) = $11,600 Model B d2 1 3 d3 EMV = .4(6,000) + .2(16,000) + .4(21,000) = $14,000 Model C 4

Decision Tree with Tree Plan Open ‘tree164e.xla’ and enable Macro first.

Decision Tree with Tree Plan

Decision Tree with Tree Plan

Decision Tree with Tree Plan

TOM BROWN INVESTMENT DECISION Tom Brown has inherited $1000. He has to decide how to invest the money for one year. A broker has suggested five potential investments. Gold Junk Bond Growth Stock Certificate of Deposit Stock Option Hedge

TOM BROWN The return on each investment depends on the (uncertain) market behavior during the year. Tom would build a payoff table to help make the investment decision

The Payoff Table DJA is down more than 800 points DJA moves within [-300,+300] DJA is up [+300,+1000] DJA is up more than1000 points

Task Evaluate each investment alternative using: Maximax approach Maximin approach Minimax Regret approach EV approach And construct Decision Tree for EV approach Calculate EVPI

QUESTIONS

Review Questions: 1. What is meant by ‘decision-making under uncertainty’? 2. Why should sequential decisions be considered differently from a series of separate decisions? 3. How can you identify the best decisions in a decision tree?