SA-1 Probabilistic Robotics Planning and Control: Partially Observable Markov Decision Processes.

Slides:



Advertisements
Similar presentations
Markov Decision Process
Advertisements

Partially Observable Markov Decision Process (POMDP)
SARSOP Successive Approximations of the Reachable Space under Optimal Policies Devin Grady 4 April 2013.
CSE-573 Artificial Intelligence Partially-Observable MDPS (POMDPs)
Decision Theoretic Planning
Optimal Policies for POMDP Presented by Alp Sardağ.
CS594 Automated decision making University of Illinois, Chicago
MDP Presentation CS594 Automated Optimal Decision Making Sohail M Yousof Advanced Artificial Intelligence.
Monte Carlo Localization for Mobile Robots Karan M. Gupta 03/10/2004
1 Reinforcement Learning Introduction & Passive Learning Alan Fern * Based in part on slides by Daniel Weld.
What Are Partially Observable Markov Decision Processes and Why Might You Care? Bob Wall CS 536.
Partially Observable Markov Decision Process By Nezih Ergin Özkucur.
主講人:虞台文 大同大學資工所 智慧型多媒體研究室
Planning under Uncertainty
1 Policies for POMDPs Minqing Hu. 2 Background on Solving POMDPs MDPs policy: to find a mapping from states to actions POMDPs policy: to find a mapping.
POMDPs: Partially Observable Markov Decision Processes Advanced AI
SA-1 1 Probabilistic Robotics Planning and Control: Markov Decision Processes.
KI Kunstmatige Intelligentie / RuG Markov Decision Processes AIMA, Chapter 17.
Markov Decision Processes
An Introduction to PO-MDP Presented by Alp Sardağ.
Incremental Pruning: A simple, Fast, Exact Method for Partially Observable Markov Decision Processes Anthony Cassandra Computer Science Dept. Brown University.
Incremental Pruning CSE 574 May 9, 2003 Stanley Kok.
Probabilistic Robotics Introduction Probabilities Bayes rule Bayes filters.
Markov Decision Processes
Decision Making Under Uncertainty Russell and Norvig: ch 16, 17 CMSC421 – Fall 2003 material from Jean-Claude Latombe, and Daphne Koller.
Making Decisions CSE 592 Winter 2003 Henry Kautz.
Based on slides by Nicholas Roy, MIT Finding Approximate POMDP Solutions through Belief Compression.
Instructor: Vincent Conitzer
MAKING COMPLEX DEClSlONS
Markov Localization & Bayes Filtering
CSE-473 Artificial Intelligence Partially-Observable MDPS (POMDPs)
Generalized and Bounded Policy Iteration for Finitely Nested Interactive POMDPs: Scaling Up Ekhlas Sonu, Prashant Doshi Dept. of Computer Science University.
1 Robot Environment Interaction Environment perception provides information about the environment’s state, and it tends to increase the robot’s knowledge.
1 ECE-517 Reinforcement Learning in Artificial Intelligence Lecture 7: Finite Horizon MDPs, Dynamic Programming Dr. Itamar Arel College of Engineering.
CSE-573 Reinforcement Learning POMDPs. Planning What action next? PerceptsActions Environment Static vs. Dynamic Fully vs. Partially Observable Perfect.
TKK | Automation Technology Laboratory Partially Observable Markov Decision Process (Chapter 15 & 16) José Luis Peralta.
Computer Science CPSC 502 Lecture 14 Markov Decision Processes (Ch. 9, up to 9.5.3)
Model-based Bayesian Reinforcement Learning in Partially Observable Domains by Pascal Poupart and Nikos Vlassis (2008 International Symposium on Artificial.
1 Markov Decision Processes Infinite Horizon Problems Alan Fern * * Based in part on slides by Craig Boutilier and Daniel Weld.
Solving POMDPs through Macro Decomposition
1 Markov Decision Processes Infinite Horizon Problems Alan Fern * * Based in part on slides by Craig Boutilier and Daniel Weld.
A Tutorial on the Partially Observable Markov Decision Process and Its Applications Lawrence Carin June 7,2006.
Decision Theoretic Planning. Decisions Under Uncertainty  Some areas of AI (e.g., planning) focus on decision making in domains where the environment.
Decision Making Under Uncertainty CMSC 471 – Spring 2041 Class #25– Tuesday, April 29 R&N, material from Lise Getoor, Jean-Claude Latombe, and.
Decision Making Under Uncertainty Lec #10: Partially Observable MDPs UIUC CS 598: Section EA Professor: Eyal Amir Spring Semester 2006 Some slides by Jeremy.
State Estimation and Kalman Filtering Zeeshan Ali Sayyed.
1 Chapter 17 2 nd Part Making Complex Decisions --- Decision-theoretic Agent Design Xin Lu 11/04/2002.
1 (Chapter 3 of) Planning and Control in Stochastic Domains with Imperfect Information by Milos Hauskrecht CS594 Automated Decision Making Course Presentation.
Probabilistic Robotics Introduction Probabilities Bayes rule Bayes filters.
Planning Under Uncertainty. Sensing error Partial observability Unpredictable dynamics Other agents.
Generalized Point Based Value Iteration for Interactive POMDPs Prashant Doshi Dept. of Computer Science and AI Institute University of Georgia
G. Cowan Lectures on Statistical Data Analysis Lecture 9 page 1 Statistical Data Analysis: Lecture 9 1Probability, Bayes’ theorem 2Random variables and.
CS 416 Artificial Intelligence Lecture 20 Making Complex Decisions Chapter 17 Lecture 20 Making Complex Decisions Chapter 17.
Markov Decision Processes AIMA: 17.1, 17.2 (excluding ), 17.3.
Partial Observability “Planning and acting in partially observable stochastic domains” Leslie Pack Kaelbling, Michael L. Littman, Anthony R. Cassandra;
Probabilistic Robotics Probability Theory Basics Error Propagation Slides from Autonomous Robots (Siegwart and Nourbaksh), Chapter 5 Probabilistic Robotics.
Partially Observable Markov Decision Process and RL
POMDPs Logistics Outline No class Wed
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 7
Markov ó Kalman Filter Localization
Markov Decision Processes
Propagating Uncertainty In POMDP Value Iteration with Gaussian Process
Markov Decision Processes
CSE 473: Artificial Intelligence
Heuristic Search Value Iteration
CS 416 Artificial Intelligence
Reinforcement Learning Dealing with Partial Observability
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 7
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 3
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 7
Presentation transcript:

SA-1 Probabilistic Robotics Planning and Control: Partially Observable Markov Decision Processes

2 POMDPs In POMDPs we apply the very same idea as in MDPs. Since the state is not observable, the agent has to make its decisions based on the belief state which is a posterior distribution over states. Let b be the belief of the agent about the state under consideration. POMDPs compute a value function over belief space:

3 Problems Each belief is a probability distribution, thus, each value in a POMDP is a function of an entire probability distribution. This is problematic, since probability distributions are continuous. Additionally, we have to deal with the huge complexity of belief spaces. For finite worlds with finite state, action, and measurement spaces and finite horizons, however, we can effectively represent the value functions by piecewise linear functions.

4 An Illustrative Example measurementsaction u 3 state x 2 payoff measurements actions u 1, u 2 payoff state x 1

5 The Parameters of the Example The actions u 1 and u 2 are terminal actions. The action u 3 is a sensing action that potentially leads to a state transition. The horizon is finite and =1.

6 Payoff in POMDPs In MDPs, the payoff (or return) depended on the state of the system. In POMDPs, however, the true state is not exactly known. Therefore, we compute the expected payoff by integrating over all states:

7 Payoffs in Our Example (1) If we are totally certain that we are in state x 1 and execute action u 1, we receive a reward of -100 If, on the other hand, we definitely know that we are in x 2 and execute u 1, the reward is In between it is the linear combination of the extreme values weighted by the probabilities

8 Payoffs in Our Example (2)

9 The Resulting Policy for T=1 Given we have a finite POMDP with T=1, we would use V 1 (b) to determine the optimal policy. In our example, the optimal policy for T=1 is This is the upper thick graph in the diagram.

10 Piecewise Linearity, Convexity The resulting value function V 1 (b) is the maximum of the three functions at each point It is piecewise linear and convex.

11 Pruning If we carefully consider V 1 (b), we see that only the first two components contribute. The third component can therefore safely be pruned away from V 1 (b).

12 Increasing the Time Horizon Assume the robot can make an observation before deciding on an action. V 1 (b)

13 Increasing the Time Horizon Assume the robot can make an observation before deciding on an action. Suppose the robot perceives z 1 for which p(z 1 | x 1 )=0.7 and p(z 1 | x 2 )=0.3. Given the observation z 1 we update the belief using Bayes rule.

14 Value Function b’(b|z 1 ) V 1 (b) V 1 (b|z 1 )

15 Increasing the Time Horizon Assume the robot can make an observation before deciding on an action. Suppose the robot perceives z 1 for which p(z 1 | x 1 )=0.7 and p(z 1 | x 2 )=0.3. Given the observation z 1 we update the belief using Bayes rule. Thus V 1 (b | z 1 ) is given by

16 Expected Value after Measuring Since we do not know in advance what the next measurement will be, we have to compute the expected belief

17 Expected Value after Measuring Since we do not know in advance what the next measurement will be, we have to compute the expected belief

18 Resulting Value Function The four possible combinations yield the following function which then can be simplified and pruned.

19 Value Function b’(b|z 1 ) p(z 1 ) V 1 (b|z 1 ) p(z 2 ) V 2 (b|z 2 )

20 State Transitions (Prediction) When the agent selects u 3 its state potentially changes. When computing the value function, we have to take these potential state changes into account.

21 State Transitions (Prediction)

22 Resulting Value Function after executing u 3 Taking the state transitions into account, we finally obtain.

23 Value Function after executing u 3

24 Value Function for T=2 Taking into account that the agent can either directly perform u 1 or u 2 or first u 3 and then u 1 or u 2, we obtain (after pruning)

25 Graphical Representation of V 2 (b) u 1 optimal u 2 optimal unclear outcome of measurement is important here

26 Deep Horizons and Pruning We have now completed a full backup in belief space. This process can be applied recursively. The value functions for T=10 and T=20 are

27 Deep Horizons and Pruning

28

29 Why Pruning is Essential Each update introduces additional linear components to V. Each measurement squares the number of linear components. Thus, an un-pruned value function for T=20 includes more than ,864 linear functions. At T=30 we have ,012,337 linear functions. The pruned value functions at T=20, in comparison, contains only 12 linear components. The combinatorial explosion of linear components in the value function are the major reason why POMDPs are impractical for most applications.

30 POMDP Summary POMDPs compute the optimal action in partially observable, stochastic domains. For finite horizon problems, the resulting value functions are piecewise linear and convex. In each iteration the number of linear constraints grows exponentially. POMDPs so far have only been applied successfully to very small state spaces with small numbers of possible observations and actions.

31 POMDP Approximations Point-based value iteration QMDPs AMDPs

32 Point-based Value Iteration Maintains a set of example beliefs Only considers constraints that maximize value function for at least one of the examples

33 Point-based Value Iteration Exact value function PBVI Value functions for T=30

34 Example Application

35 Example Application

36 QMDPs QMDPs only consider state uncertainty in the first step After that, the world becomes fully observable.

37

38 Augmented MDPs Augmentation adds uncertainty component to state space, e.g., Planning is performed by MDP in augmented state space Transition, observation and payoff models have to be learned

39

40

41 Coastal Navigation

42 Dimensionality Reduction on Beliefs

43 Monte Carlo POMDPs Represent beliefs by samples Estimate value function on sample sets Simulate control and observation transitions between beliefs

44 Derivation of POMDPs Value Function Representation Piecewise linear and convex:

45 Value Iteration Backup Belief update is a function: Backup in belief space:

46 Derivation of POMDPs Break into two components

47 Finite Measurement Space

48 Starting at Previous Belief *: constant **: linear function in params of belief space

49 Putting it Back in

50 Maximization over Actions

51 Getting max in Front of Sum

52 Final Result Individual constraints:

53