MR 유체 감쇠기를 이용한 사장교의 지진응답 제어 기법

Slides:



Advertisements
Similar presentations
2002 Control of a Seismically Excited Cable-Stayed Bridge Employing a Hybrid Control Strategy ,
Advertisements

Optimal placement of MR dampers
Scissor-Jack-Damper System for Reduction of Stay Cable
Performance-based Evaluation of the Seismic Response of Bridges with Foundations Designed to Uplift Marios Panagiotou Assistant Professor, University of.
Presented at the 2009 AK EPSCoR All-Hands Meeting, Anchorage, Alaska Zhaohui (Joey) Yang, Ph.D. Associate Professor University of Alaska Anchorage 14 May.
사장교의 지진 응답 제어를 위한 납고무 받침의 설계 기준 제안
Exponential Tracking Control of Hydraulic Proportional Directional Valve and Cylinder via Integrator Backstepping J. Chen†, W. E. Dixon‡, J. R. Wagner†,
1 結構防振液流阻尼器之研發及應用研討會 ( ) 實驗案例 Shaking Table Test of Full Scale Structure Controlled with Fluid Dampers (EASEC-9, Bali, Indonesia, ,
Fractional Order LQR for Optimal Control of Civil Structures Abdollah Shafieezadeh*, Keri Ryan*, YangQuan Chen+ *Civil and Environmental Engineering Dept.
GW Rodgers, C Denmead, N Leach, JG Chase & John B Mander
Comparative Study on Performances of Various Semiactive Control Algorithms for Stay Cables 2004 년도 강구조공학회 학술발표대회 2004 년 6 월 5 일 장지은, 한국과학기술원 건설 및 환경공학과.
CABLE-STAYED BRIDGE SEISMIC ANALYSIS USING ARTIFICIAL ACCELEROGRAMS
Structural Dynamics & Vibration Control Lab 1 December Department of Civil & Environmental Engineering K orea A dvanced I nstitute of S cience.
정형조, 세종대학교 토목환경공학과 조교수 최강민, 한국과학기술원 건설 및 환경공학과 박사과정 지한록, 한국과학기술원 건설 및 환경공학과 석사과정 고만기, 공주대학교 토목환경공학과 교수 이인원, 한국과학기술원 건설 및 환경공학과 교수 2005 년 한국강구조학회 학술발표회.
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 박선규 : 교수, 성균관대학교 토목공학과 박선규 : 교수, 성균관대학교 토목공학과.
Sang-Won Cho* : Ph.D. Student, KAIST Sang-Won Cho* : Ph.D. Student, KAIST Dong-Hyawn Kim: Senior Researcher, KORDI Dong-Hyawn Kim: Senior Researcher, KORDI.
1 지진하중을 받는 구조물의 MR 댐퍼의 동특성을 고려한 반능동 신경망제어 Heon-Jae Lee 1), Hyung-Jo Jung 2), Ju-Won Oh 3), In-Won Lee 4) 1) Graduate Student, Dept. of Civil and Environmental.
Semi-active Management of Structures Subjected to High Frequency Ground Excitation C.M. Ewing, R.P. Dhakal, J.G. Chase and J.B. Mander 19 th ACMSM, Christchurch,
Structural Dynamics & Vibration Control Lab. 1 Kang-Min Choi, Ph.D. Candidate, KAIST, Korea Jung-Hyun Hong, Graduate Student, KAIST, Korea Ji-Seong Jo,
* Dong-Hyawn Kim: Graduate Student, KAIST Ju-Won Oh: Professor, Hannam University Ju-Won Oh: Professor, Hannam University In-Won Lee: Professor, KAIST.
Structural Dynamics & Vibration Control Lab. 1 대용량 20 톤 MR 유체 감쇠기의 새로운 동적 모델 정형조, 한국과학기술원 건설환경공학과 최강민, 한국과학기술원 건설환경공학과 Guangqiang Yang, University of Notre.
Hyung-Jo Jung Sejong University, Korea Hyung-Jo Jung Sejong University, Korea Kang-Min Choi Korea Advanced Inst. of Science and Tech. Kang-Min Choi Korea.
케이블 진동 감쇠를 위한 반능동 제어 장치 성능의 실험적 평가
* 김 만철, 정 형조, 박 선규, 이 인원 * 김 만철, 정 형조, 박 선규, 이 인원 구조동역학 및 진동제어 연구실 구조동역학 및 진동제어 연구실 한국과학기술원 토목공학과 중복 또는 근접 고유치를 갖는 비비례 감쇠 구조물의 자유진동 해석 1998 한국전산구조공학회 가을.
Computational Structural Engineering Institute Autumn Conference 2002 Oct , 2002 VIBRATION CONTROL OF BRIDGE FOR SERVICEABILITY Jun-Sik Ha 1),
Presented by: Sasithorn THAMMARAK (st109957)
Robust Hybrid Control of a Seismically Excited Cable-Stayed Bridge JSSI 10th Anniversary Symposium on Performance of Response Controlled Buildings Kyu-Sik.
By Chanat Ratanasumawong (CRW) Identification of System’s Dynamic Parameters Engineering Mechanical Laboratory, CRW, Engineering.
Structural Dynamics & Vibration Control Lab., KAIST 1 Structural Vibration Control Using Semiactive Tuned Mass Damper Han-Rok Ji, Graduate Student, KAIST,
Structural Dynamics & Vibration Control Lab 1 Smart Passive System based on MR Damper for Benchmark Structural Control Problem for a Seismically Excited.
지진 하중을 받는 구조물의 능동 모달 퍼지 제어시스템
CONTENTS Introduction Semi-Active Control Proposed Control Algorithm
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 이종헌 : 교수, 경일대학교 토목공학과 이종헌 : 교수, 경일대학교 토목공학과.
Advanced Science and Technology Letters Vol.32 (Architecture and Civil Engineering 2013), pp Development.
Structural Dynamics & Vibration Control Lab., KAIST, Korea 1 A Comparative Study on Aseismic Performances of Base Isolation Systems for Multi-span Continuous.
Hard or Soft ? C. Collette, K. Artoos, S. Janssens, P. Fernandez-Carmona, A. Kuzmin, M. Guinchard, A. Slaathaug, C. Hauviller The research leading to these.
1 Structural Dynamics & Vibration Control Lab., KAIST 사장교의 면진 성능 향상을 위한 납고무 받침의 설계 기준 제안 Guidelines of Designing L.R.B. for a Cable-Stayed Bridge to Reduce.
Hybrid System Controlled by a  -Synthesis Method for a Seismically Excited Cable-Stayed Bridge 2004 추계 학술대회 소음진동분야 NRL 2 지진하중을 받는 사장교를 위한  - 합성법을 이용한.
MR 댐퍼를 기반으로 하는 스마트 수동제어 시스템 대한토목학회 정기 학술대회 2004 년 10 월 21 일 조상원 : KAIST 건설환경공학과, 박사 이헌재 : KAIST 건설환경공학과, 박사과정 오주원 : 한남대학교 토목환경공학과, 교수 이인원 : KAIST 건설환경공학과,
* 김동현 : KAIST 토목공학과, 박사후연구원 오주원 : 한남대학교 토목환경공학과, 교수 오주원 : 한남대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이인원 : KAIST 토목공학과, 교수 이인원 :
Probabilistic seismic hazard assessment for the pseudo-negative stiffness control of a steel base-isolated building: A comparative study with bilinear.
CABER Project Update February 22, 2008
The Asian-Pacific Symposium on Structural Reliability and its Applications Seoul, Korea, August 18-20, 2004 Kyu-Sik Park Kyu-Sik Park, Ph. D. Candidate,
Structural Dynamics & Vibration Control Lab. 1 모달 퍼지 이론을 이용한 지진하중을 받는 구조물의 능동제어 최강민, 한국과학기술원 건설 및 환경공학과 조상원, 한국과학기술원 건설 및 환경공학과 오주원, 한남대학교 토목공학과 이인원, 한국과학기술원.
모달변위를 이용한 지진하중을 받는 구조물의 능동 신경망제어 2004 년도 한국전산구조공학회 춘계 학술발표회 국민대학교 2004 년 4 월 10 일 이헌재, 한국과학기술원 건설및환경공학과 박사과정 정형조, 세종대학교 토목환경공학과 조교수 이종헌, 경일대학교 토목공학과 교수.
Robust Analysis of a Hybrid System Controlled by a  -Synthesis Method Kyu-Sik Park, Post Doctoral Researcher, UIUC, USA Hyung-Jo Jung, Assistant Professor,
Kyu-Sik Park Kyu-Sik Park, Graduate Student, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Research Assistant Professor, KAIST, Korea In-Won Lee In-Won Lee,
1 지진시 구조물의 지능제어 기법 Intelligent Control of Structures under Earthquakes 김동현 : 한국과학기술원 토목공학과, 박사과정 이규원 : 전북대학교 토목공학과, 교수 이종헌 : 경일대학교 토목공학과, 교수 이인원 : 한국과학기술원.
 - 합성법을 이용한 사장교의 지진응답 제어 년도 한국전산구조공학회 가을 학술발표회 박규식, 한국과학기술원 건설 및 환경공학과 박사후과정 정형조, 세종대학교 토목환경공학과 조교수 윤우현, 경원대학교 산업환경대학원 부교수 이인원, 한국과학기술원.
Kang-Min Choi, Kang-Min Choi, Graduate Student, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Professor, Sejong National University, Korea In-Won Lee In-Won.
Smart Passive System Based on MR Damper JSSI 10 th Anniversary Symposium on Performance of Response Controlled Buildings Nov , Yokohama Japan.
Sang-Won Cho* : Ph.D. Candidate, KAIST Sang-Won Cho* : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Hyung-Jo.
HYBRID SYSTEM CONTROLLED BY A  -SYNTHESIS METHOD International Symposium on Earthquake Engineering Commemorating 10 th Anniversary of the 1995 Kobe Earthquake.
년도 한국지진공학회 춘계학술발표회 Hybrid Control Strategy for Seismic Protection of Benchmark Cable-Stayed Bridges 박규식, 한국과학기술원 토목공학과 박사과정 정형조, 한국과학기술원.
Eduardo Ismael Hernández UPAEP University, MEXICO
VIBRATION CONTROL OF STRUCTURE USING CMAC
Modal Control for Seismically Excited Structures using MR Damper
A BRIDGE WITH VEHICLE LOADS
Adaptive Control Method for Seismic Response Attenuation Omar A. S
Feasibility of Using Simple Adaptive Control Strategy for Dynamic Bridge Response Under Stiffness Variation. Rachel W. Soares, Luciana R. Barroso, Omar.
KAIST-Kyoto Univ. Joint Seminar
반능동 MR 유체 감쇠기를 이용한 지진하중을 받는 구조물의 신경망제어 이헌재, 한국과학기술원 건설환경공학과 석사과정
Implementation of Modal Control for
Robust Hybrid Control System
Robust Hybrid Control System
Vibration based structural damage detection for structural health monitoring of civil infrastructure system.
A Survey on State Feedback AMD Control
Modified Sturm Sequence Property for Damped Systems
a Bang-Bang Type Controller
Control of a Hybrid System using a -Synthesis Method
Presentation transcript:

MR 유체 감쇠기를 이용한 사장교의 지진응답 제어 기법 한국전산구조공학회 춘계 학술발표회 서울대학교, 서울 2002년 4월 13일 MR 유체 감쇠기를 이용한 사장교의 지진응답 제어 기법 정형조, 한국과학기술원 건설환경공학과 문영종, 한국과학기술원 건설환경공학과 고만기, 공주대학교 토목공학과 이인원, 한국과학기술원 건설환경공학과

OUTLINE Introduction Benchmark Problem Statement Seismic Control System Using MR Dampers Numerical Simulation Results Conclusions

INTRODUCTION The control of cable-stayed bridges is a unique and challenging problem. During the 2nd International Workshop on Structural Control (Hong Kong, 1996), a working group was formed to develop a benchmark control problem for bridges. Dyke et al. have developed a benchmark control problem for seismically excited cable-stayed bridges (2000).

Semiactive Control Using MR Dampers Magnetorheological (MR) fluid dampers: new class of semiactive control devices that utilize MR fluids to provide controllable damping forces.

Semiactive Control Using MR Dampers Magnetorheological (MR) fluid dampers: new class of semiactive control devices that utilize MR fluids to provide controllable damping forces.

Semiactive Control Using MR Dampers Magnetorheological (MR) fluid dampers: new class of semiactive control devices that utilize MR fluids to provide controllable damping forces. MR damper-based control strategies Reliability of passive control devices Versatility and adaptability of fully active control system Attractive features Bounded-input, bounded-output stability Small energy requirements

Objective of This Study: to investigate the effectiveness of semiactive control strategies using MR fluid dampers for seismic protection of cable-stayed bridges

BENCHMARK PROBLEM STATEMENT Benchmark Bridge Model Under construction in Cape Griardeau, Missouri, USA. To be completed in 2003. 636 m 570 m Missouri Side 350 m main span 142m side span 128 Cables Illinois Approach 12 additional piers 570 m

Control Design Problem Longitudinal excitation applied simultaneously. For proposed controllers, designers must define Sensor models and locations Device models and locations Control algorithm K(s)

Historical Earthquakes Considered El Centro PGA = 0.36g

Historical Earthquakes Considered El Centro PGA = 0.36g Mexico City PGA = 0.14g

Historical Earthquakes Considered El Centro PGA = 0.36g Mexico City PGA = 0.14g Gebze Turkey PGA = 0.26g

Evaluation Criteria Peak Responses (J1 – J6) Base shear – Shear at deck level Overturning moment – Moment at deck level Cable tension Deck displacement at abutment Normed Responses (J7 – J11) Base shear – Shear at deck level Overturning moment – Moment at deck level Cable tension Control Strategy (J12 – J18) Peak control force and device stroke Peak and total power required Number of control devices and sensors

SEISMIC CONTROL SYSTEM USING MR DAMPERS Sensors Five accelerometers Four displacement transducers 24 force transducers for measuring control forces Control Devices 24 MR dampers (capacity: 1000 kN/each)

Dynamic Model of MR Dampers Previous methods: based on the small-scale damper Bingham model (Stanway et al. 1985, 1987) Simple Bouc-Wen model (Spencer et al. 1997) Modified Bouc-Wen model (Spencer et al. 1997) Proposed method: based on the large-scale damper

Dynamic Model of MR Dampers Previous methods: based on the small-scale damper Bingham model (Stanway et al. 1985, 1987) Simple Bouc-Wen model (Spencer et al. 1997) Modified Bouc-Wen model (Spencer et al. 1997) Proposed method: based on the large-scale damper

Modified Bouc-Wen Model (Spencer et al. 1997) Control force: where , and First-order filter:

Optimized Parameters of Dynamic Model for MR Dampers   Parameter Value a 46.2 kN/m k0 0.002 kN/m b 41.2 kN/m/V k1 0.0097 kN/m c0a 110 kNs/m  164 m-2 c0b 114 kNs/m/V  c1a 8359 kNs/m A 1107.2 c1b 7483 kNs/m/V n 2 x0 0.0 m  100

Physical Structure

Physical Structure Detailed F.E. Model ~ 105 - 106 DOF

Physical Structure Detailed F.E. Model Evaluation Model ~ 105 - 106 DOF Evaluation Model ~ 102 - 103 DOF

Physical Structure Detailed F.E. Model Evaluation Model ~ 105 - 106 DOF Evaluation Model ~ 102 - 103 DOF Control Design Model ~ 10 - 102 DOF

Control Design Model Reduced-Order Model (30 states) By forming a balanced realization and condensing out the states with relatively small controllability and observability grammians

Control Strategy for Semiactive Control Control Law MR Damper Structure Decision Block Nominal Controller

Control Strategy for Semiactive Control Alternatively, H¥, Cumulant Control, Risk Sensitive, etc., can be employed. LQG / H2 Linear Output Feedback Controller Control Law MR Damper Structure Decision Block Nominal Controller

Control Strategy for Semiactive Control Control Law MR Damper Structure Decision Block Nominal Controller Clipped-Optimal Control u = 0 u = umax

Weighting Parameters for Semiactive Control Performance Index where Q: Response weighing matrix R: Control force weighting matrix (identity matrix) Appropriate Weighting Parameters by Stochastic Response Analyses Overturning moment (Qover_mom) Deck displacement (Qdeck_disp) In this study, the following performance index is considered. In this equation, Q means the response weighting matrix and R is the control force weighting matrix, here assumed an identity matrix. To design well performed controllers, we have to obtain the appropriate weighting parameters. In this study, the appropriate weighting parameters were obtained by stochastic response analyses. Following the extensive parametric study, this combination of weighting parameters are considered: That is, the combination of overturning moment and deck displacement.

NUMERICAL SIMULATIONS Comparison Methods Ideal active control Ideal semiactive control Passive control using MR dampers Passive-off (command signal u = 0 Volts) Passive-on (command signal u = 10 Volts) Semiactive control using MR dampers Values of Optimized Weighting Parameters Qover_mom = 6×10-9; Qdeck_disp = 6×103

Time-History Responses (Base Shear Force) El Centro earthquake: 71% reduction in peak Gebze Turkey earthquake: 64% reduction in peak kN Mexico City earthquake: 54% reduction in peak

Maximum Evaluation Criteria (Peak Responses) This slide shows the maximum evaluation criteria for peak responses. Each bar represents each control case, like this. As you can see, proposed smart damping strategy shows better performance compared with Professor Dyke’s sample controller. And, the proposed method shows nearly the same performance as the active control case.

Maximum Evaluation Criteria (Normed Responses) This slide is for normed responses. It shows the similar results to the peak responses case.

Maximum Evaluation Criteria (Control Strategy) This slide shows the maximum evaluation criteria related to the control strategy. The control force of the proposed smart damping case is a little bit larger than that of Professor Dyke’s method. On the other hand, the stroke of the device is quite smaller than that of the Professor Dyke’s method.

Robustness to Earthquake Motion Intensities

CONCLUSIONS A semiactive control strategy using MR dampers has been proposed for the benchmark bridge problem. The performance of the proposed semiactive control design using MR dampers nearly achieves the same performance as that of the ideal active or semiactive control system. MR dampers show great promise for response control of seismically excited cable-stayed bridges.