ITGD4207 Operations Research

Slides:



Advertisements
Similar presentations
Operations Management Transportation Models
Advertisements

Operations Research Assistant Professor Dr. Sana’a Wafa Al-Sayegh 2 nd Semester ITGD4207 University of Palestine.
Transportation Problem
Transportation Problem (TP) and Assignment Problem (AP)
Transportation and Assignment Models
Chapter 6 Linear Programming: The Simplex Method
Quantitative Techniques for Decision Making M.P. Gupta & R.B. Khanna © Prentice Hall India.
Masalah Penugasan.
Introduction to Operations Research
TRANSPORTATION PROBLEM Finding Initial Basic Feasible Solution Shubhagata Roy.
Transportation Problems MHA Medical Supply Transportation Problem A Medical Supply company produces catheters in packs at three productions facilities.
1 Transportation Problems Transportation is considered as a “special case” of LP Reasons? –it can be formulated using LP technique so is its solution (to.
Computational Methods for Management and Economics Carla Gomes Module 8b The transportation simplex method.
© 2006 Prentice Hall, Inc.C – 1 Transportation Modeling Module C.
MC - 1© 2014 Pearson Education, Inc. Transportation Models PowerPoint presentation to accompany Heizer and Render Operations Management, Eleventh Edition.
PowerPoint presentation to accompany Operations Management, 6E (Heizer & Render) © 2001 by Prentice Hall, Inc., Upper Saddle River, N.J C-1 Operations.
Transparency Masters to accompany Heizer/Render – Principles of Operations Management, 5e, and Operations Management, 7e © 2004 by Prentice Hall, Inc.,
1 ENGM Prototype Example K-Log Lumber Mill Warehouse.
Linear Inequalities and Linear Programming Chapter 5
The Simplex Method: Standard Maximization Problems
Operation Research Chapter 3 Simplex Method.
The Transportation and Assignment Problems
To accompany Quantitative Analysis for Management, 8e by Render/Stair/Hanna 10-1 © 2003 by Prentice Hall, Inc. Upper Saddle River, NJ Chapter 10.
Presentation: H. Sarper
Transportation Models Transportation problem is about distribution of goods and services from several supply locations to several demand locations. Transportation.
Transportation-1 Operations Research Modeling Toolset Linear Programming Network Programming PERT/ CPM Dynamic Programming Integer Programming Nonlinear.
Linear Programming Applications
Chapter 7 Transportation, Assignment & Transshipment Problems Part 1 ISE204/IE252 Prof. Dr. Arslan M. ÖRNEK.
Linear Programming Applications
Operations Management
Transportation Model Lecture 16 Dr. Arshad Zaheer
LINEAR PROGRAMMING SIMPLEX METHOD.
The Simplex algorithm.
Transportation Transportation models deals with the transportation of a product manufactured at different plants or factories supply origins) to a number.
Transportation Problem
Transportation Problem
Chapter 6 Linear Programming: The Simplex Method Section 2 The Simplex Method: Maximization with Problem Constraints of the Form ≤
Chapter 7 Transportation, Assignment & Transshipment Problems
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Solving Linear Programming Problems: The Simplex Method
. 1 Transportation and Assignment Problems. . 2 Applications Physical analog of nodes Physical analog of arcs Flow Communication systems phone exchanges,
Network Optimization Problems
QUANTITATIVE ANALYSIS FOR MANAGERS TRANSPORTATION MODEL
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2005 Thomson/South-Western Linear Programming: The Simplex Method n An Overview of the Simplex Method n Standard Form n Tableau Form n Setting.
Chapter 4 Linear Programming: The Simplex Method
1 Network Models Transportation Problem (TP) Distributing any commodity from any group of supply centers, called sources, to any group of receiving.
OR Chapter 8. General LP Problems Converting other forms to general LP problem : min c’x  - max (-c)’x   = by adding a nonnegative slack variable.
Operations Management MBA Sem II Module IV Transportation.
Transportation Problems Joko Waluyo, Ir., MT., PhD Dept. of Mechanical and Industrial Engineering.
1 1 Slide Subject Name: Operation Research Subject Code: 10CS661 Prepared By:Mrs.Pramela Devi, Mrs.Sindhuja.K Mrs.Annapoorani Department:CSE 3/1/2016.
Reid & Sanders, Operations Management © Wiley 2002 Solving Transportation Problems C SUPPLEMENT.
Distribution Model Meaning Types Transportation Model Assignment Model.
The Transportation Problem Simplex Method Remember our initial transportation problem with the associated cost to send a unit from the factory to each.
The Transportation and Assignment Problems
The Transportation Model
ENGM 631 Optimization Transportation Problems.
Chapter 3 The Simplex Method and Sensitivity Analysis
Chapter 7 Transportation, Assignment & Transshipment Problems
TRANSPORTATION PROBLEM
Transportation Problems
Chapter 5 Transportation, Assignment, and Transshipment Problems
Operations Management
Operations Management
TRANSPORTATION PROBLEMS
Transportation and Assignment Problems
Presentation transcript:

ITGD4207 Operations Research Chapter 5 Linear Programming Transportation Model

Linear Programming Transportation Model The Transportation Model Formulation of Transportation Model Examples (1 and 2) Determination of the starting Basic Feasible Solution BFS NORTH-WEST Corner Method for determining a starting BFS LEAST COST Method of determining the starting BFS. Vogel’s approximation method (VAM)

The Transportation Model The transportation model is a special class of LPPs that deals with transporting(=shipping) a commodity from sources (e.g. factories) to destinations (e.g. warehouses). The objective is to determine the shipping schedule that minimizes the total shipping cost while satisfying supply and demand limits. We assume that the shipping cost is proportional to the number of units shipped on a given route.

We assume that there are m sources 1,2, …, m and n destinations 1, 2, …, n. The cost of shipping one unit from Source i to Destination j is cij. We assume that the availability at source i is ai (i=1, 2, …, m) and the demand at the destination j is bj (j=1, 2, …, n). We make an important assumption: the problem is a balanced one. That is That is, total availability equals total demand.

We can always meet this condition by introducing a dummy source (if the total demand is more than the total supply) or a dummy destination (if the total supply is more than the total demand). Let xij be the amount of commodity to be shipped from the source i to the destination j. Though we can solve the above LPP by Simplex method, we solve it by a special algorithm called the transportation algorithm. We present the data in an mn tableau as explained below.

Thus the problem becomes the LPP Minimize subject to

Destination 1 2 . . n Supply a1 a2 am b1 b2 bn 1 2 . m Source Demand c1n a1 c21 c22 c2n a2 cm1 cm2 cmn am b1 b2 bn 1 2 . m Source Demand

Formulation of Transportation Models Example 1 MG Auto has three plants in Los Angeles, Detroit, and New Orleans, and two major distribution centers in Denver and Miami. The capacities of the three plants during the next quarter are 1000, 1300 and 1200 cars. The quarterly demands at the two distribution centers are 2300 and 1400 cars. The transportation cost per car from Los Angeles to Denver and Miami are $80 and $215 respectively. The corresponding figures from Detroit and New Orleans are 100, 108 and 102, 68 respectively.

Formulate the transportation Model. Since the total demand = 3700 > 3500 (Total supply) we introduce a dummy supply with availability 3700-3500=200 units to make the problem a balanced one. If a destination receives u units from the dummy source, it means that that destination gets u units less than what it demanded. We usually put the cost per unit of transporting from a dummy source as zero (unless some restrictions are there). Thus we get the transportation tableau

Destination Denver Miami Supply Source 80 215 1000 100 108 1300 102 68 1200 200 2300 1400 Los Angeles Source Detroit New Orleans Dummy Demand We write inside the (i,j) cell the amount to be shipped from source i to destination j. A blank inside a cell indicates no amount was shipped.

Example 2 In the previous problem, penalty costs are levied at the rate of $200 and $300 for each undelivered car at Denver and Miami respectively. Additionally no deliveries are made from the Los Angeles plant to the Miami distribution center. Set up the transportation model. The above imply that the "cost" of transporting a car from the dummy source to Denver and Miami are respectively 200 and 300. The second condition means we put a "high" transportation cost from Los Angeles to Miami. We thus get the tableau

Destination Denver Miami Supply Source 80 M 1000 100 108 1300 102 68 1200 200 300 2300 1400 Los Angeles Source Detroit New Orleans Dummy Demand Note: M indicates a very "big" positive number. It is denoted by "infinity".

Determination of the starting Basic Feasible Solution BFS In any transportation model we determine a starting BFS and then iteratively move towards the optimal solution which has the least shipping cost. There are three methods to determine a starting BFS. As mentioned earlier, any BFS will have only m+n-1 basic variables (which may assume non-zero =positive values) and the remaining variables will all be non-basic and so have zero values. In any transportation tableau, we only indicate the values of basic variables. The cells corresponding to non-basic variables will be blank.

NORTH-WEST Corner Method for determining a starting BFS The method starts at the north-west corner cell (i.e. cell (1,1)). Step 1. We allocate as much as possible to the selected cell and adjust the associated amounts of supply and demand by subtracting the allocated amount. Step 2. Cross out the row (column) with zero supply (zero demand) to indicate that no further assignments can be made to that row(column).

If both a row and a column are simultaneously satisfied then if exactly one row or column is left uncrossed make the obvious allocations and stop. Else cross out one only (either the row or the column) and leave a zero supply(demand) in the uncrossed out row(column). Step 3. If no further allocation is to be made, stop. Else move to the cell to the right (if a column has just been crossed out) or to the cell below if a row has just been crossed out. Go to Step 1.

Consider the transportation tableau: Destination 1 2 3 4 Supply 3 7 6 4 5 2 8 2 1 3 2 Source 2 1 1 1 3 2 1 2 Demand 1 1 Total shipping cost = 48

of determining the starting BFS. 2. LEAST COST Method of determining the starting BFS. In this method we start assigning as much as possible to the cell with the least unit transportation cost (ties are broken arbitrarily) and the associated amounts of supply and demand are adjusted by subtracting the allocated amount. Cross out the row (column) with zero supply (zero demand) to indicate that no further assignments can be made to that row(column).

If both a row and a column are simultaneously satisfied then if exactly one row or column is left uncrossed make the obvious allocations and stop. Else cross out one only (either the row or the column) and leave a zero supply(demand) in the uncrossed out row(column). Next look for the uncrossed out cell with the smallest unit cost and repeat the process until no further allocations are to be made.

Consider the transportation tableau: Destination 1 2 3 4 Supply 3 7 6 4 5 2 8 4 2 1 1 2 2 Source 2 2 3 3 Demand 1 Total shipping cost = 36

3. Vogel’s approximation method (VAM) Step 1. For each row (column) remaining under consideration, determine a penalty by subtracting the smallest unit cost in the row (column) from the next smallest unit cost in the same row(column). ( If two unit costs tie for being the smallest unit cost, then the penalty is 0). Step2. Identify the row or column with the largest penalty. Break ties arbitrarily. Allocate as much as possible to the cell with the least unit cost in the selected row or column.(Again break the ties arbitrarily.) Adjust the supply and demand and cross out the satisfied row or column.

If both a row and a column are simultaneously satisfied then if exactly one row or column is left uncrossed make the obvious allocations and stop. Else cross out one only (either the row or the column) and leave a zero supply(demand) in the uncrossed out row(column). (But omit that row or column for calculating future penalties). Step 3. If all allocations are made, stop. Else go to step 1.

1 2 3 4 Supply Row Penalties 1 3 2 Source - 2 2 3 3 1 1 3 2 1 4 - 1 Destination 1 2 3 4 Supply Row Penalties 3 7 6 4 5 2 8 1 1 1 3 2 Source - 2 2 3 1 1 3 Demand 1 1 3 2 Column Penalties 1 4 - 1 Total shipping cost = 32