1 My Chapter 19 Lecture Outline. 2 Chapter 19: Magnetic Forces and Fields Magnetic Fields Magnetic Force on a Point Charge Motion of a Charged Particle.

Slides:



Advertisements
Similar presentations
Magnetic Force Acting on a Current-Carrying Conductor
Advertisements

Magnetic Forces and Fields
Magnetism and Currents. A current generates a magnetic field. A magnetic field exerts a force on a current. Two contiguous conductors, carrying currents,
Chapter 22 Magnetism AP Physics B Lecture Notes.
Chapter 20 Magnetism.
Magnetism Review and tid-bits. Properties of magnets A magnet has polarity - it has a north and a south pole; you cannot isolate the north or the south.
Currents and Magnetism Textbook Sections 22-4 – 22-7 Physics 1161: Lecture 11.
Chapter 28. Magnetic Field
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 19: Magnetic Forces and Fields.
Ch 20 1 Chapter 20 Magnetism © 2006, B.J. Lieb Some figures electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New.
Magnetic Fields and Forces
Wednesday, Oct. 26, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #16 Wednesday, Oct. 26, 2005 Dr. Jaehoon Yu Charged Particle.
Chapter 22 Magnetism.
What would the loop do in this situation? The loop will rotate about an axis halfway between the left and right sides of the circuit, parallel to the plane.
Cutnell/Johnson Physics 8th edition Reading Quiz Questions
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Magnets and the magnetic field Electric currents create magnetic fields.
Physics 121: Electricity & Magnetism – Lecture 9 Magnetic Fields Dale E. Gary Wenda Cao NJIT Physics Department.
Example: Magnetic Force Directions from Right Hand Rule
Magnetism July 2, Magnets and Magnetic Fields  Magnets cause space to be modified in their vicinity, forming a “ magnetic field ”.  The magnetic.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Magnets and the magnetic field Electric currents create magnetic fields.
Copyright © 2009 Pearson Education, Inc. Lecture 8 - Magnetism.
Written by Dr. John K. Dayton MAGNETIC FIELDS THE MAGNETIC FIELD FORCES ON MOVING CHARGES THE MAGNETIC FIELD OF A LONG, STRAIGHT WIRE THE MAGNETIC FIELD.
Magnetism Magnetic materials have the ability to attract or repel other types of magnetic materials. But not all materials are magnetic.
Lecture Outline Chapter 19 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Magnetism 1. 2 Magnetic fields can be caused in three different ways 1. A moving electrical charge such as a wire with current flowing in it 2. By electrons.
The force on a current-carrying wire A magnetic field exerts a force on a single moving charge, so it's not surprising that it exerts a force on a current-carrying.
Fields Model used when force act a distance. Quantity / unit measure.
Chapter 21 Magnetic Forces and Magnetic Fields Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 22 Physics, 4 th Edition James S. Walker.
Chapter 19 Magnetic Force on Wires Solenoids Mass Spectrometers.
Review Problem Review Problem Review Problem 3 5.
Fundamental Physics II PETROVIETNAM UNIVERSITY FACULTY OF FUNDAMENTAL SCIENCES Vungtau, 2013 Pham Hong Quang
The wires are separated by distance a and carry currents I 1 and I 2 in the same direction. Wire 2, carrying current I 2, sets up a magnetic field B 2.
Magnets and the magnetic field Electric currents create magnetic fields Magnetic fields of wires, loops, and solenoids Magnetic forces on charges and currents.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Magnets and the magnetic field Electric currents create magnetic fields.
Magnetism. Chapter 19 Problems ,2,5, ,15, ,21, , ,38, , ,47.
Chapter 20 Magnetism. Units of Chapter 20 Magnets and Magnetic Fields Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic.
When charged particles move through magnetic fields, they experience a force, which deflects them Examples of such particles are electrons, protons, and.
A Brief Recap Charged particles in motion create magnetic fields around themselves. We can use Right-Hand Rule #1 to determine the direction of a magnetic.
Magnetic Forces and Magnetic Fields
Ch Magnetic Forces and Fields
Chapter 19: Magnetism Magnets  Magnets Homework assignment : 18,25,38,45,50 Read Chapter 19 carefully especially examples.
Chapter 20 Magnetism Magnets and Magnetic Fields Magnets have two ends – poles – called north and south. Like poles repel; unlike poles attract.
Currents and Magnetism
Lecture 27 Magnetic Fields: II
Magnetism: Force and Field. General Characteristics Like poles repel Unlike poles attract You can never isolate a north pole from a south pole. N S N.
Firdiana Sanjaya Ana Alina
2/8/2010 Do Now: 12/16/2013 (on last week’s paper) What makes a magnet a magnet? What makes a magnet a magnet? Why are some magnets stronger than others?
Major Concepts of Physics PHY102 – Lecture #  Syracuse University Lecture #3 Magnetic fields and forces January 27 th, 2016 Prof. Liviu Movileanu.
Major Concepts of Physics PHY102 – Lecture #  Syracuse University Lecture #2 Magnetic fields and forces January 25 th, 2016 Prof. Liviu Movileanu.
Physics 102: Lecture 9, Slide 1 Currents and Magnetism Physics 102: Lecture 09.
Ph126 Spring 2008 Lecture #8 Magnetic Fields Produced by Moving Charges Prof. Gregory Tarl é
Magnetism. Magnets and Magnetic Fields Magnets have two ends – poles – called north and south. Like poles repel; unlike poles attract.
Chapter 20 Magnetism Magnetism 20 Phy 2054 Lecture Notes.
PHY 102: Lecture Magnetic Field 6.2 Magnetic Force on Moving Charges 6.3 Magnetic Force on Currents 6.4 Magnetic Field Produced by Current.
Physics Chapter 21: Magnetism. ☺Magnets ☺Caused by the Polarization of Iron Molecules ☺Material Containing Iron (Fe)
Chapter 20 Magnetism Conceptual Quiz 20 Conceptual Quiz Questions.
Chapter 21 Magnetic Forces and Magnetic Fields Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at.
Nighttime exam? If we have the exam in the evening of July 3 rd, we would cancel class on July 5 th and you get a long weekend. Would you prefer to have.
Magnets have two ends – poles – called north and south. Like poles repel; unlike poles attract. If you cut a magnet in half, you don’t get a north pole.
PHY 102: Lecture Magnetic Field
Chapter 19: Magnetic Forces and Fields
Electric Field & Magnetic Field
Magnetic Fields and Forces
Prepared by Dedra Demaree, Georgetown University
Force on an Electric Charge Moving in a Magnetic Field
Lorentz Forces The force F on a charge q moving with velocity v through a region of space with electric field E and magnetic field B is given by: 11/23/2018.
Chapter 27 Magnetism Chapter 27 opener. Magnets produce magnetic fields, but so do electric currents. An electric current flowing in this straight wire.
Active Figure 29.1 Compass needles can be used to trace the magnetic field lines in the region outside a bar magnet.
Conceptual MC Questions
Presentation transcript:

1 My Chapter 19 Lecture Outline

2 Chapter 19: Magnetic Forces and Fields Magnetic Fields Magnetic Force on a Point Charge Motion of a Charged Particle in a Magnetic Field Crossed E and B fields Magnetic Forces on Current Carrying Wires Torque on a Current Loop Magnetic Field Due to a Current

3 §19.1 Magnetic Fields All magnets have at least one north pole and one south pole. Field lines emerge from north poles and enter through south poles. Magnetic Dipole

4 Magnets exert forces on one another. Opposite magnetic poles attract and like magnetic poles repel.

5 Magnetic field lines are closed loops. There is no (known!) source of magnetic field lines. (No magnetic monopoles) If a magnet is broken in half you just end up with two magnets.

6 Near the surface of the Earth, the magnetic field is that of a dipole. Note the orientation of the magnetic poles!

7 Away from the Earth, the magnetic field is distorted by the solar wind. Evidence for magnetic pole reversals has been found on the ocean floor. The iron bearing minerals in the rock contain a record of the Earth’s magnetic field.

8 §19.2 Magnetic Force on a Point Charge The magnetic force on a point charge is: The unit of magnetic field (B) is the Tesla (1T = 1 N/Am).

9 The magnitude of F B is: where vsin  is the component of the velocity perpendicular to the direction of the magnetic field.  represents the angle between v and B.  v B Draw the vectors tail- to-tail to determine .

10 The direction of F B is found from the right-hand rule. The right-hand rule is: using your right hand, point your fingers in the direction of the velocity v and your thumb in the direction of the magnetic field B. The palm of your hand points in the direction of the force F.

11 § 19.3 Charged Particle Moving Perpendicular to a Uniform B-field A positively charged particle has a velocity v (orange arrow) as shown. The magnetic field is into the page. The magnetic force, at this instant, is shown in blue. In this region of space this positive charge will move CCW in a circular path.

12 Applying Newton’s 2 nd Law to the charge:

13 Example: How long does it take an electron to complete one revolution if the radius of its path is r (see the figure on slide 11)? The distance traveled by the electron during one revolution is d = 2  r. The electron moves at constant speed so d = vT as well. The speed of the electron can be obtained using the result of the previous slide. Is the period of the electron’s motion.

14 Mass Spectrometer A charged particle is shot into a region of known magnetic field. Here, Particles of different mass will travel different distances before striking the detector. (v, B, and q can be controlled.) V Detector B

15 Other devices that use magnetic fields to bend particle paths are cyclotrons and synchrotrons. Cyclotrons are used in the production of radioactive nuclei. For medical uses see the website of the Nuclear Energy Institute.Nuclear Energy Institute Synchrotrons are being tested for use in treating tumors.

16 § 19.6 Magnetic Force on a Current Carrying Wire The force on a current carrying wire in an external magnetic field is L is a vector that points in the direction of the current flow. Its magnitude is the length of the wire.

17 The magnitude of is and its direction is given by the right-hand rule.

18 Example (text problem 19.50): A 20.0 cm by 30.0 cm loop of wire carries 1.0 A of current clockwise. (a) Find the magnetic force on each side of the loop if the magnetic field is 2.5 T to the left. I = 1.0 A B Left: F out of page Top: no force Right: F into page Bottom: no force

19 The magnitudes of the nonzero forces are: (b) What is the net force on the loop? Example continued:

20 § 19.7 Torque on a Current Loop Consider a current carrying loop in a magnetic field. The net force on this loop is zero, but the net torque is not. B Axis L/2 Force out of page Force into page

21 The net torque on the current loop is: N = number of turns of wire in the loop. I = the current carried by the loop. A = area of the loop. B = the magnetic field strength.  = the angle between A and B.

22 The direction of A is defined with a right-hand rule. Curl the fingers of your right hand in the direction of the current flow around a loop and your thumb will point in the direction of A. Because there is a torque on the current loop, it must have both a north and south pole. A current loop is a magnetic dipole. (Your thumb, using the above RHR, points from south to north.)

23 § 19.8 Magnetic Field due to a Current Moving charges (a current) create magnetic fields.

24 The magnetic field at a distance r from a long, straight wire carrying current I is where  0 = 4  10  7 Tm/A is the permeability of free space. The direction of the B-field lines is given by a right-hand rule. Point the thumb of your right hand in the direction of the current flow while wrapping your hand around the wire; your fingers will curl in the direction of the magnetic field lines.

25 A wire carries current I out of the page. The B-field lines of this wire are CCW. Note: The field (B) is tangent to the field lines.

26 Example (text problem 19.72): Two parallel wires in a horizontal plane carry currents I 1 and I 2 to the right. The wires each have a length L and are separated by a distance d. (a) What are the magnitude and direction of the B-field of wire 1 at the location of wire 2? I I d 1 2 Into the page

27 (b) What are the magnitude and direction of the magnetic force on wire 2 due to wire 1? F 12 toward top of page (toward wire 1) (c) What are the magnitude and direction of the B-field of wire 2 at the location of wire 1? Out of the page Example continued:

28 (d) What are the magnitude and direction of the magnetic force on wire 1 due to wire 2? F 21 toward bottom of page (toward wire 2) (e) Do parallel currents attract or repel? They attract. (f) Do antiparallel currents attract or repel? They repel. Example continued:

29 The magnetic field of a current loop: The strength of the B-field at the center of the (single) wire loop is:

30 The magnetic field of a solenoid: A solenoid is a coil of wire that is wrapped in a cylindrical shape. The field inside a solenoid is nearly uniform (if you stay away from the ends) and has a strength: Where n = N/L is the number of turns of wire (N) per unit length (L) and I is the current in the wire.

31

32 Summary Magnetic forces are felt only by moving charges Right-Hand Rules Magnetic Force on a Current Carrying Wire Torque on a Current Loop Magnetic Field of a Current Carrying Wire (straight wire, wire loop, solenoid)