20.6 Force between Two Parallel Wires The magnetic field produced at the position of wire 2 due to the current in wire 1 is: The force this field exerts.

Slides:



Advertisements
Similar presentations
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Advertisements

How to Use This Presentation
Magnetism Chapter 27 opener. Magnets produce magnetic fields, but so do electric currents. An electric current flowing in this straight wire produces a.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 20 Magnetism.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 19: Magnetic Forces and Fields.
Ch 20 1 Chapter 20 Magnetism © 2006, B.J. Lieb Some figures electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New.
Magnetism! Chapter 19.
Ch 8 Magnetism.
Copyright © 2009 Pearson Education, Inc. Chapter 27 Magnetism.
Chapter 22 Magnetism.
Chapter 28 Sources of Magnetic Field
Cutnell/Johnson Physics 8th edition Reading Quiz Questions
Lecture 8b – Sources of Magnetic Field
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Magnets and the magnetic field Electric currents create magnetic fields.
Chapter 21 Magnetism SPS10. Students will investigate the properties of electricity and magnetism. c. Investigate applications of magnetism and/or its.
Copyright © 2009 Pearson Education, Inc. Lecture 8 - Magnetism.
Chapter 30: Sources of the Magnetic Field
Copyright © 2009 Pearson Education, Inc. Chapter 27 Magnetism.
Copyright © 2009 Pearson Education, Inc. Chapter 27 Magnetism.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Copyright © 2009 Pearson Education, Inc. © 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for.
BALDWIN 1 PHYSICS Mr. BALDWIN/Mr. JONES MAGNETISM April 4, 2013 AIM: What is magnetism? DO NOW: Draw a bar magnet, labeling its poles and showing the magnetic.
Lecture Outline Chapter 19 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
When a current-carrying loop is placed in a magnetic field, the loop tends to rotate such that its normal becomes aligned with the magnetic field.
Chapter 19 Magnetism 1. Magnets 2. Earth’s Magnetic Field 3. Magnetic Force 4. Magnetic Torque 5. Motion of Charged Particles 6. Amperes Law 7. Parallel.
A Powerful Attraction or A Class of Phenomena caused by Moving Electric Charges.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 22 Physics, 4 th Edition James S. Walker.
Magnetism Chapter 24.
Magnetic Field Chapter 28 opener. A long coil of wire with many closely spaced loops is called a solenoid. When a long solenoid carries an electric current,
Copyright © 2009 Pearson Education, Inc. Applications: Motors, Loudspeakers, Galvanometers.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Magnets and the magnetic field Electric currents create magnetic fields.
Magnetism. Magnets ► A magnet has polarity - it has a north and a south pole; you cannot isolate the north or the south pole (there is no magnetic monopole)
Chapter 20 Magnetism. Units of Chapter 20 Magnets and Magnetic Fields Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic.
Magnetism and its applications.
Chapter 19 Table of Contents Section 1 Magnets and Magnetic Fields
Copyright © 2009 Pearson Education, Inc. Chapter 27 Magnetism.
Magnetic Forces and Magnetic Fields
Creating Magnetic Fields Text: Ch. 20 M. Blachly, AP Physics.
1 Chapter 19: Magnetism The nature of magnetism Iron ore found near Magnesia Compass needles align N-S: magnetic Poles North (South) Poles attracted to.
Electromagnetism.
Copyright © 2009 Pearson Education, Inc. Magnetic Materials – Ferromagnetism.
Copyright © 2009 Pearson Education, Inc. Chapter 28 Sources of Magnetic Field.
Copyright © 2009 Pearson Education, Inc. Chapter 28 Sources of Magnetic Field.
Chapter 20 Magnetism Magnets and Magnetic Fields Magnets have two ends – poles – called north and south. Like poles repel; unlike poles attract.
© Houghton Mifflin Harcourt Publishing Company Preview Objectives Magnets Magnetic Domains Magnetic Fields Chapter 19 Section 1 Magnets and Magnetic Fields.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Magnets and the magnetic field Electric currents create magnetic fields.
Magnetism Chapter 27 opener. Magnets produce magnetic fields, but so do electric currents. An electric current flowing in this straight wire produces a.
Copyright © 2009 Pearson Education, Inc. Chapter 27 Magnetism.
© 2014 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Magnetism. Magnets and Magnetic Fields Magnets have two ends – poles – called north and south. Like poles repel; unlike poles attract.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 20 Magnetism Magnetism 20 Phy 2054 Lecture Notes.
Magnetism. Magnets and Magnetic Fields Magnets have two ends – poles – called north and south. Like poles repel; unlike poles attract.
Chapter 21 Magnetic Forces and Magnetic Fields Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at.
Phys102 Lecture 13, 14, 15 Magnetic fields
Chapter 19: Magnetic Forces and Fields
Chapter 19 Preview Objectives Magnets Magnetic Domains Magnetic Fields
Chapter 30: Sources of the Magnetic Field
Chapter 28 Sources of Magnetic Field
Physics: Principles with Applications, 6th edition
Chapter 20: Magnetism Purpose: To describe magnetic field around a permanent magnet. Objectives: Describe a magnetic poles Describe magnetic field. Magnetic.
Magnetic Materials – Ferromagnetism
Applications: Motors Loudspeakers Galvanometers
Magnetic Fields Magnetic Forces
Magnetism =due to moving electrical charges.
Magnetism Chapter 8.
Chapter 27 Magnetism HW #6 Due Monday, April 15
Presentation transcript:

20.6 Force between Two Parallel Wires The magnetic field produced at the position of wire 2 due to the current in wire 1 is: The force this field exerts on a length l 2 of wire 2 is: (20-7)

20.6 Force between Two Parallel Wires Parallel currents attract; antiparallel currents repel.

Example The two wires of a 2.0 m long appliance cord are 3.0 mm apart and carry a current of 8.0 A dc. Calculate the force one wire exerts on the other. The currents are in opposite directions (one toward the appliance, the other away from it), so the force would be repulsive and tend to spread the wires apart.

Example A horizontal wire carries a current I 1 =80 A dc. A second parallel wire 20 cm below it must carry how much current I 2 so that it doesn’t fall due to gravity? The lower wire has a mass of 0.12 g per meter of length.

20.7 Solenoids and Electromagnets A solenoid is a long coil of wire. If it is tightly wrapped, the magnetic field in its interior is almost uniform: (20-8)

20.7 Solenoids and Electromagnets If a piece of iron is inserted in the solenoid, the magnetic field greatly increases. Such electromagnets have many practical applications.

20.8 Ampère’s Law Ampère’s law relates the magnetic field around a closed loop to the total current flowing through the loop. (20-9)

20.8 Ampère’s Law Ampère’s law can be used to calculate the magnetic field in situations with a high degree of symmetry.

20.9 Torque on a Current Loop; Magnetic Moment The forces on opposite sides of a current loop will be equal and opposite (if the field is uniform and the loop is symmetric), but there may be a torque. The magnitude of the torque is given by: (20-10) The quantity NIA is called the magnetic dipole moment, M : (20-11)

Example A circular coil of wire has a diameter of 20.0 cm ad contains 10 loops. The current in each loop is 3.00 A, and the coil is placed in a 2.00 T external magnetic field. Determine the maximum and minimum torque exerted on the coil by the field.

20.10 Applications: Galvanometers, Motors, Loudspeakers A galvanometer takes advantage of the torque on a current loop to measure current.

20.10 Applications: Galvanometers, Motors, Loudspeakers An electric motor also takes advantage of the torque on a current loop, to change electrical energy to mechanical energy.

20.10 Applications: Galvanometers, Motors, Loudspeakers Loudspeakers use the principle that a magnet exerts a force on a current-carrying wire to convert electrical signals into mechanical vibrations, producing sound.

20.11 Mass Spectrometer A mass spectrometer measures the masses of atoms. If a charged particle is moving through perpendicular electric and magnetic fields, there is a particular speed at which it will not be deflected:

20.11 Mass Spectrometer All the atoms reaching the second magnetic field will have the same speed; their radius of curvature will depend on their mass.

Example Carbon atoms of atomic mass 12.0 u are found to be mixed with another, unknown, element. In a mass spectrometer with fixed B’, the carbon traverses a path of radius 22.4 cm and the unknown’s path has a 26.2 cm radius. What is the unknown element? Assume they have the same charge.

20.12 Ferromagnetism: Domains and Hysteresis Ferromagnetic materials are those that can become strongly magnetized, such as iron and nickel. These materials are made up of tiny regions called domains; the magnetic field in each domain is in a single direction.

20.12 Ferromagnetism: Domains and Hysteresis When the material is unmagnetized, the domains are randomly oriented. They can be partially or fully aligned by placing the material in an external magnetic field.

20.12 Ferromagnetism: Domains and Hysteresis A magnet, if undisturbed, will tend to retain its magnetism. It can be demagnetized by shock or heat. The relationship between the external magnetic field and the internal field in a ferromagnet is not simple, as the magnetization can vary.

20.12 Ferromagnetism: Domains and Hysteresis Starting with unmagnetized material and no magnetic field, the magnetic field can be increased, decreased, reversed, and the cycle repeated. The resulting plot of the total magnetic field within the ferromagnet is called a hysteresis curve.

Summary of Chapter 20 Magnets have north and south poles Like poles repel, unlike attract Unit of magnetic field: tesla Electric currents produce magnetic fields A magnetic field exerts a force on an electric current:

Summary of Chapter 20 A magnetic field exerts a force on a moving charge: Magnitude of the field of a long, straight current-carrying wire: Parallel currents attract; antiparallel currents repel

Summary of Chapter 20 Magnetic field inside a solenoid: Ampère’s law: Torque on a current loop:

Homework - Ch. 20 Questions #’s 2, 3, 4, 5, 6, 14, 15 Problems #’s 3, 7, 11, 15, 21, 29, 37, 49, 51, 53, 55, 61, 65