Cold Atoms in rotating optical lattice Sankalpa Ghosh, IIT Delhi Ref: Rashi Sachdev, Sonika Johri, SG arXiv: 1005.4391 Acknowledgement: G.V Pi, K. Sheshadri,

Slides:



Advertisements
Similar presentations
Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Advertisements

Dynamics of Spin-1 Bose-Einstein Condensates
Dynamics of bosonic cold atoms in optical lattices. K. Sengupta Indian Association for the Cultivation of Science, Kolkata Collaborators: Anirban Dutta,
Jinwu Ye Penn State University Outline of the talk: 1.Introduction to Boson Hubbard Model and supersolids on lattices 2.Boson -Vortex duality in boson.
Superfluid insulator transition in a moving condensate Anatoli Polkovnikov Harvard University Ehud Altman, Eugene Demler, Bertrand Halperin, Misha Lukin.
Subir Sachdev Quantum phase transitions of ultracold atoms Transparencies online at Quantum Phase Transitions Cambridge.
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
Interacting Ultra Cold Atoms a brief overview Fei Zhou PITP, University of British Columbia at Quantum Nanoscience conference, Noosa Blue, Australia, Jan.
Spin Correlated States in Optical Lattices Fei Zhou ( ITP, Utrecht ) April 15, 2003 PIMS, Banff National Park, Canada Acknowledgement: E.Demler (Harvard),
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
No friction. No air resistance. Perfect Spring Two normal modes. Coupled Pendulums Weak spring Time Dependent Two State Problem Copyright – Michael D.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Anderson localization in BECs
Bose-Fermi solid and its quantum melting in a one-dimensional optical lattice Bin Wang 1, Daw-Wei Wang 2, and Sankar Das Sarma 1 1 CMTC, Department of.
Quantum Phase Transition in Ultracold bosonic atoms Bhanu Pratap Das Indian Institute of Astrophysics Bangalore.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Superfluid insulator transition in a moving condensate Anatoli Polkovnikov Harvard University Ehud Altman, Eugene Demler, Bertrand Halperin, Misha Lukin.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Non-equilibrium dynamics of cold atoms in optical lattices Vladimir Gritsev Harvard Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann.
Temperature scale Titan Superfluid He Ultracold atomic gases.
Quick and Dirty Introduction to Mott Insulators
Guillermina Ramirez San Juan
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
Superfluid insulator transition in a moving condensate Anatoli Polkovnikov (BU and Harvard) (Harvard) Ehud Altman, (Weizmann and Harvard) Eugene Demler,
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Subir Sachdev Yale University Phases and phase transitions of quantum materials Talk online: or Search for Sachdev on.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Centre for Quantum Physics & Technology, Clarendon Laboratory, University of Oxford. Dieter Jaksch (University of Oxford, UK) Bose-Einstein condensates.
Kaiserslautern, April 2006 Quantum Hall effects - an introduction - AvH workshop, Vilnius, M. Fleischhauer.
System and definitions In harmonic trap (ideal): er.
Michiel Snoek September 21, 2011 FINESS 2011 Heidelberg Rigorous mean-field dynamics of lattice bosons: Quenches from the Mott insulator Quenches from.
Ana Maria Rey March Meeting Tutorial May 1, 2014.
Aside: the BKT phase transiton Spontaneous symmetry breaking Mermin-Wagner: – no continuous symmetry breaking in models with short ranged interactions.
School of something FACULTY OF OTHER School of Physics and Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES “Classical entanglement” and cat states.
CLARENDON LABORATORY PHYSICS DEPARTMENT UNIVERSITY OF OXFORD and CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE Quantum Simulation Dieter.
Polar molecules in optical lattices Ryan Barnett Harvard University Mikhail Lukin Harvard University Dmitry Petrov Harvard University Charles Wang Tsing-Hua.
Bose-Einstein condensates in random potentials Les Houches, February 2005 LENS European Laboratory for Nonlinear Spectroscopy Università di Firenze J.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
Strong correlations and quantum vortices for ultracold atoms in rotating lattices Murray Holland JILA (NIST and Dept. of Physics, Univ. of Colorado-Boulder)
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Non-equilibrium dynamics of ultracold bosons K. Sengupta Indian Association for the Cultivation of Science, Kolkata Refs: Rev. Mod. Phys. 83, 863 (2011)
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Lecture 2. Why BEC is linked with single particle quantum behaviour over macroscopic length scales Interference between separately prepared condensates.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Hidden topological order in one-dimensional Bose Insulators Ehud Altman Department of Condensed Matter Physics The Weizmann Institute of Science With:
Subir Sachdev Superfluids and their vortices Talk online:
Click to edit Master subtitle style 1/12/12 Non-equilibrium in cold atom systems K. Sengupta Indian Association for the Cultivation of Science, Kolkata.
Exploring many-body physics with synthetic matter
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
1 Vortex configuration of bosons in an optical lattice Boulder Summer School, July, 2004 Congjun Wu Kavli Institute for Theoretical Physics, UCSB Ref:
July 2010, Nordita Assa Auerbach, Technion, Israel AA, Daniel P. Arovas and Sankalpa Ghosh, Phys. Rev. B74, 64511, (2006). G. Koren, Y. Mor, AA, and E.
Agenda Brief overview of dilute ultra-cold gases
NTNU 2011 Dimer-superfluid phase in the attractive Extended Bose-Hubbard model with three-body constraint Kwai-Kong Ng Department of Physics Tunghai University,
Arnau Riera, Grup QIC, Universitat de Barcelona Universität Potsdam 10 December 2009 Simulation of the Laughlin state in an optical lattice.
Tunable excitons in gated graphene systems
One-dimensional disordered bosons from weak to strong interactions
Spin-Orbit Coupling Effects in Bilayer and Optical Lattice Systems
Time Dependent Two State Problem
ultracold atomic gases
Novel quantum states in spin-orbit coupled quantum gases
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
One-Dimensional Bose Gases with N-Body Attractive Interactions
Atomic BEC in microtraps: Squeezing & visibility in interferometry
Spectroscopy of ultracold bosons by periodic lattice modulations
a = 0 Density profile Relative phase Momentum distribution
周黎红 中国科学院物理研究所 凝聚态理论与材料计算实验室 指导老师: 崔晓玲 arXiv:1507,01341(2015)
Presentation transcript:

Cold Atoms in rotating optical lattice Sankalpa Ghosh, IIT Delhi Ref: Rashi Sachdev, Sonika Johri, SG arXiv: Acknowledgement: G.V Pi, K. Sheshadri, Y. Avron, E. Altman HRI Workshop on strong Correlation, Nov. 2010

Bosons and Fermions

Nobel Prizes 1997, 2001

Bose Einstein Condensate of Cold Atoms Bose Einstein condensate of cold atoms Characterized by a macroscopic wave function Described by Gross-Pitaevski equation T=nK Gross Pitaevskii description works if

Optical Lattices Optical lattices are formed by standing waves of counter propagating laser beams and act as a lattice for ultra cold atoms. These systems are highly tunable: lattice spacing and depth can be varied by tuning the frequency and intensity of lasers. These optical lattices thus are artificial perfect crystals for atoms and act as an ideal system for studying solid state physics phenomenon, with more tunability of parameters than in actual solids. Nature, Vol 388, 1997

Bose Hubbard Model If the wavelength of the lattice potential is of the order of the coherence length then the Gross-Pitaevskii description breaks down. Tight binding approximation The many boson hamiltonian is

Bose Hubbard Model Trapping potential confining frequency Hz Optical Lattice potential confining frequency KHz I Bloch, Nature (review article)

Bose Hubbard Model Bose Hubbard Model : It describes an interacting boson gas in a lattice potential, with only onsite interactions. Fisher et al. PRB (1989) Sheshadri et al. EPL(1993) Jaksch et.al, PRL (1998) Superfluid phase : sharp interference pattern Mott Insulator phase : phase coherence lost t>> U U >> t

Mean field treatment Sheshadri et al. EPL (1993) Decouple the hopping term and retain the terms only linear in fluctuation Gutzwiller variational Wave function

Cold Atoms with long range Interaction Example 1 : dipolar cold gases ( 52 Cr Condensate, T. Pfau’s group Stutgart ( PRL, 2005) Example 2: Cold Polar Molecules Example 3: BEC coupled with excited Rydberg states: ( Nath et al., PRL 2010) Add Optical lattice Tight binding approximation Extended Bose Hubbard Model

NNN NNNN NN K Goral et al. PRL,2002 Santos et al. PRL, 2003 Minimal EBH model-just add the nearest neighbor interaction New Quantum Phases – Density wave and supersolid T D Kuhner et al. (2000)

Phase diagram of e-BHM with DW, SS, MI and SF phases Due to the competition between NN term and the onsite interaction, new phases such as Density wave and supersolids are formed Kovrizhin, G. V. Pai, Sinha, EPL 72(2005) G. G. Bartouni et al. PRL (2006) Pai and Pandit (PRB, 2005) At t=0, we have transitions between DW (n/2) to MI(n) at and then to DW(n/2+1) at d - being the dimension of system. DW (½)=|1,0,1,0,1,0,......> MI( 1) =|1,1,1,1,……>

Density Wave Phase : Alternating number of particles at each site of the form Superfluid order parameter or the macroscopic wave function vanishes. There is no coherence between the atomic wave functions at sites, on the other hand site states are perfect Fock states Supersolid Phase : Why Superfluid?, there is macroscopic wave- function showing superfluid behaviour, flows effortlessly. Why Crystalline ? Order parameter shows an oscillatory behaviour as a function of site co- ordinate ( Superfluid +Density wave ) Soldiers marching along coherently Crystalline Superfluid Kim and Chan, Science (2004)

Magnetic field for neutral atoms How to create artificial magnetic field for neutral atoms? JILA, Oxford G. Juzelineus et al. PRA (2006)

Rotating Optical Lattice Y J Lin et al. Nature(2009)

Bose Hubbard model in a magnetic field M. Niemeyer et al(1999), J Reijinders et al. (2004), C. Wu et al. (2004) M Oktel et al. (2007), D. GoldBaum et al. (2008) (2008), Sengupta and Sinha (2010), Das Sharma et al. (2010)

Topological constraint

Extended Bose Hubbard Model under magnetic field Ground state of the Hamiltonian is found by variational minimization with a Gutzwiller wave function For the Density wave phase we have two sublattices A & B * Set m=n Mott Phase ( R.Sachdeva, S.Johri, S.Ghosh arXiv v1 )

Reduced Basis ansatz Goldbaum et al ( PRA, 2008) Umucalilar et al. (PRA, 2007) Close to the Mott or Density wave boundary only two neighboring Fock states are occupied MI-SF DW-SS

Variational minimization of the energy gives DW BoundaryTime dependent variational mean field theory

Include Rotation Substitute the variational parameters

Minimize with respect to the variational parameters Two component superfluid order parameter

Harper Equation Spinorial Harper Equation Where the spatial part of the wave function satisfies Eigenvalues of Hofstadter butterfly can be mapped to

Hofstadter Butterfly Hofstadter Equation in Landau gauge Color HF Avron et al.

Typically electron in a uniform magnetic field forms Landau Level each of is highly degenerate A plot of such energy levels as a function of Increasing strength of magnetic field will be a set Of straight line all starting from origin If a periodic potential is added as an weak perturbation then it lifts this degeneracy and splits each Landau level into n Φ sublevels where n Φ =Ba 2 /φ 0 namely the number of fluxes through each unit ce ll Hofstadter butterfly

DW Phase Boundary Boundary of the DW & MI phase related to edge eigen value of Hofstadter Butterfly

Modification of the phase boundary due to the rotation or artificial magnetic field

Plot of Eigenfunction Vortex in a supersolid Vortex in a superfluid Checker board vortices Surrounding superfluid density Shows two sublattice modulation Highest band of the Hofstadter butterfly

What about the other eigenvalues ? Density wave order parameter Good starting points for more general solutions within Gutzwiller approximation

Experimental detection Time of flight imaging : interference pattern will bear signature of the sublattice modulated superfluid density around the core Bragg Scattering : Structure factor, Phase sensitivity etc. Real Space technique ? Momentum space