Physique des particules élémentaires – aspects expérimentaux Suive/complémente le PHYS 2263 (d) La référence de base: D.H. Perkins Introduction to High.

Slides:



Advertisements
Similar presentations
Experimental Particle Physics PHYS6011 Joel Goldstein, RAL 1.Introduction & Accelerators 2.Particle Interactions and Detectors (2) 3.Collider Experiments.
Advertisements

Peter Schleper, Hamburg University SUSY07 Non-SUSY Searches at HERA 1 Non-SUSY Searches at HERA Peter Schleper Hamburg University SUSY07 July 27, 2007.
1 Data Analysis II Beate Heinemann UC Berkeley and Lawrence Berkeley National Laboratory Hadron Collider Physics Summer School, Fermilab, August 2008.
Top physics at hadron colliders
Regina Demina, University of Rochester 02/08/2012 Forward-backward asymmetry in top-antitop production in proton-antiproton collisions.
Current limits (95% C.L.): LEP direct searches m H > GeV Global fit to precision EW data (excludes direct search results) m H < 157 GeV Latest Tevatron.
W Physics at LEP Paolo Azzurri Pisa (ALEPH-CMS ) Hanoi August 7, th Rencontres du Vietnam New Views in Particle Physics.
1 Electroweak Physics Lecture 4. 2 Physics Menu for Today Top quark and W boson properties at the Tevatron.
W physics at LEP E.Barberio Southern Methodist University PIC2003 Zeuthen 28 th June 2003.
Chris Hays Duke University TEV4LHC Workshop Fermilab 2004 W Mass Measurement at the Tevatron CDF DØDØ.
Recent Electroweak Results from the Tevatron Weak Interactions and Neutrinos Workshop Delphi, Greece, 6-11 June, 2005 Dhiman Chakraborty Northern Illinois.
W Mass & Width Measurement at LEP II BEACH 04, IIT Chicago, 08/03/04 Ambreesh Gupta, University of Chicago.
Heavy Flavor Production at the Tevatron Jennifer Pursley The Johns Hopkins University on behalf of the CDF and D0 Collaborations Beauty University.
24/10/2006Prof. dr hab. Elżbieta Richter-Wąs Physics Program of the experiments at L arge H adron C ollider Lecture 3.
Introduction to Single-Top Single-Top Cross Section Measurements at ATLAS Patrick Ryan (Michigan State University) The measurement.
On the Trail of the Higgs Boson Meenakshi Narain.
S. Martí i García Liverpool December 02 1 Selection of events in the all-hadronic channel S. Martí i García CDF End Of Year Review Liverpool / December.
1 Hadronic In-Situ Calibration of the ATLAS Detector N. Davidson The University of Melbourne.
Top Quark Properties and Physics at LHC V Šimák CTU-FJFI, ASCR-FZU Prague (on behalf of ATLAS collaboration) Electroweak gauge bosons Top quark mass Physics.
Comparison of ttjj production at Tevatron and LHC Regina Demina University of Rochester 12/09/03.
Single-Top Cross Section Measurements at ATLAS Patrick Ryan (Michigan State University) Introduction to Single-Top The measurement.
Fabiola Gianotti, Physics at LHC, Pisa, April 2002 PART 2.
1 Top Quark Pair Production at Tevatron and LHC Andrea Bangert, Young Scientist Workshop, , Ringberg Castle.
Top Quark Physics: An Overview Young Scientists’ Workshop, Ringberg castle, July 21 st 2006 Andrea Bangert.
Top Mass Measurements at CDF Erik Brubaker University of Chicago for the CDF Collaboration Moriond EWK Mar 11-18, 2006.
W properties AT CDF J. E. Garcia INFN Pisa. Outline Corfu Summer Institute Corfu Summer Institute September 10 th 2 1.CDF detector 2.W cross section measurements.
FNAL Academic Lectures – May, –Tevatron -> LHC Physics 3 –Tevatron -> LHC Physics 3.1 QCD - Jets and Di - jets 3.2 Di - Photons 3.3 b Pair Production.
Jet Studies at CMS and ATLAS 1 Konstantinos Kousouris Fermilab Moriond QCD and High Energy Interactions Wednesday, 18 March 2009 (on behalf of the CMS.
1 A Preliminary Model Independent Study of the Reaction pp  qqWW  qq ℓ qq at CMS  Gianluca CERMINARA (SUMMER STUDENT)  MUON group.
Working Group C: Hadronic Final States David Milstead The University of Liverpool Review of Experiments 27 experiment and 11 theory contributions.
Searches for new Physics in the Top quark decay 정 연 세 University of Rochester.
Z AND W PHYSICS AT CEPC Haijun Yang, Hengne Li, Qiang Li, Jun Guo, Manqi Ruan, Yusheng Wu, Zhijun Liang 1.
1 Top Quark Pair Production at Tevatron and LHC Andrea Bangert, Herbstschule fuer Hochenergiephysik, Maria Laach, September 2007.
KIRTI RANJANDIS, Madison, Wisconsin, April 28, Top Quark Production Cross- Section at the Tevatron Collider On behalf of DØ & CDF Collaboration KIRTI.
Commissioning Studies Top Physics Group M. Cobal – University of Udine ATLAS Week, Prague, Sep 2003.
C. K. MackayEPS 2003 Electroweak Physics and the Top Quark Mass at the LHC Kate Mackay University of Bristol On behalf of the Atlas & CMS Collaborations.
Searches for the Standard Model Higgs at the Tevatron presented by Per Jonsson Imperial College London On behalf of the CDF and DØ Collaborations Moriond.
Report on LHT at the LHC ~ Some results from simulation study ~ Shigeki Matsumoto (Univ. of Toyama) 1.What kinds of LHT signals are expected, and how accurately.
Top quark properties in ATLAS Ruth Laura Sandbach X-SILAFAE-2014, Medellin, Colombia 27/11/2014 X-SILAFAE
Precision electroweak physics Roberto Tenchini INFN-Pisa 5th Rencontres du Vietnam Particle Physics and Astrophysics Hanoi August 5 to August 11, 2004.
W Mass and Width at LEP2 Jeremy Nowell ALEPH / Imperial College London On behalf of the LEP collaborations.
Electroweak physics at the LHC with ATLAS APS April 2003 Meeting – Philadelphia, PA Arthur M. Moraes University of Sheffield, UK (on behalf of the ATLAS.
Liu Minghui Nanjing MC study of W polarization and ttbar spin correlation Liu Minghui, Zhu Chengguang April 27, 2008.
Higgs Reach Through VBF with ATLAS Bruce Mellado University of Wisconsin-Madison Recontres de Moriond 2004 QCD and High Energy Hadronic Interactions.
Emily Nurse W production and properties at CDF0. Emily Nurse W production and properties at CDF1 The electron and muon channels are used to measure W.
1 TOP MASS MEASUREMENT WITH ATLAS A.-I. Etienvre, for the ATLAS Collaboration.
Top Quark Physics At TeVatron and LHC. Overview A Lightning Review of the Standard Model Introducing the Top Quark tt* Pair Production Single Top Production.
06/30/05 Mathieu Agelou – LowX’05 1 Sensitivity to PDFs at the Tevatron. Mathieu Agelou CEA – Saclay Low x workshop, Sinaia, Romania.
The Standard Model of the elementary particles and their interactions
Charged Higgs boson at the LHC 이강영 ( 건국대학교 연세대학교
Achim Stahl RWTH Aachen University Beijing, June 2006.
1. 2 Tevatron Run II 1fb -1 per experiment on tape ~1.3 fb -1 delivered luminosity Peak luminosity 1.7 x cm -2 s -1 Presented here: ~ 700 pb -1.
October 2011 David Toback, Texas A&M University Research Topics Seminar1 David Toback Texas A&M University For the CDF Collaboration CIPANP, June 2012.
Searching for the Higgs boson in the VH and VBF channels at ATLAS and CMS Dr. Adrian Buzatu Research Associate.
Marc M. Baarmand – Florida Tech 1 TOP QUARK STUDIES FROM CMS AT LHC Marc M. Baarmand Florida Institute of Technology PHYSICS AT LHC Prague, Czech Republic,
Kinematics of Top Decays in the Dilepton and the Lepton + Jets channels: Probing the Top Mass University of Athens - Physics Department Section of Nuclear.
Particle Physics II Chris Parkes Top Quark Discovery Decay Higgs Searches Indirect mW and mt Direct LEP & LHC searches 2 nd Handout.
Régis Lefèvre (LPC Clermont-Ferrand - France)ATLAS Physics Workshop - Lund - September 2001 In situ jet energy calibration General considerations The different.
Jessica Levêque Rencontres de Moriond QCD 2006 Page 1 Measurement of Top Quark Properties at the TeVatron Jessica Levêque University of Arizona on behalf.
La Thuile, March, 15 th, 2003 f Makoto Tomoto ( FNAL ) Prospects for Higgs Searches at DØ Makoto Tomoto Fermi National Accelerator Laboratory (For the.
RHIC-PV, April 27, 2007 M. Rijssenbeek 1 The Measurement of W ’s at the CERN and FNAL hadron colliders W ’s at RHIC ! W ’s at CERN – UA2 W ’s at FNAL -
Higgs in the Large Hadron Collider Joe Mitchell Advisor: Dr. Chung Kao.
Viktor Veszpremi Purdue University, CDF Collaboration Tev4LHC Workshop, Oct , Fermilab ZH->vvbb results from CDF.
Recent Electroweak Results from Tevatron Junjie Zhu State University of New Stony Brook For the CDF and DØ Collaborations ASPEN 2008 January 15,
Suyong Choi (SKKU) SUSY Standard Model Higgs Searches at DØ Suyong Choi SKKU, Korea for DØ Collaboration.
Eric COGNERAS LPC Clermont-Ferrand Prospects for Top pair resonance searches in ATLAS Workshop on Top Physics october 2007, Grenoble.
The study of q q production at LHC in the l l channel and sensitivity to other models Michihisa Takeuchi ~~ LL ± ± (hep-ph/ ) Kyoto Univ. (YITP),
An Important thing to know.
Top mass measurements at the Tevatron and the standard model fits
C.M.S.:.
Presentation transcript:

Physique des particules élémentaires – aspects expérimentaux Suive/complémente le PHYS 2263 (d) La référence de base: D.H. Perkins Introduction to High Energy Physics, 4th edition + PDG, Review of Particle Physics, les chapitres selectionnés à les références supplémentaires: Aitchison&Hey, Halzen&Martin, Ferbel(ed), Kleinknecht PHYS 2356: Jour 7

K. Piotrzkowski, PHYS Plan du cours 1.Introduction/motivation (3.2) 2.Détecteurs modernes (10.2) 3.Collisionneurs à hautes énergies (17.2) 4.Systèmes des déclenchement et sélection (24.2) 5.Interactions e  e  (3.3) 6.Interactions ep(10.3) 7.Interactions pp(21.4) 8.Au-delà du modèle standard + physique des particules et cosmologie(5.5) 9.Cours d’exercices pratiques 10. … et encore une fois

K. Piotrzkowski, PHYS La physique aupres des collisioneurs pp

K. Piotrzkowski, PHYS

5

6

7

8

9

10

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS Measurement of W mass with precision Method used at hadron colliders different from e + e - colliders W  jet jet : cannot be extracted from QCD jet-jet production  cannot be used W  : since  + X, too many undetected neutrinos  cannot be used only W  e and W   decays are used to measure m W at hadron colliders

K. Piotrzkowski, PHYS W production at LHC : q’ q W Ex. e,   (pp  W + X)  30 nb ~ 300  10 6 events produced ~ 60  10 6 events selected after analysis cuts one year at low L, per experiment ~ 50 times larger statistics than at Tevatron ~ 6000 times larger statistics than WW at LEP

K. Piotrzkowski, PHYS Since not known (only can be measured through E T miss ), measure transverse mass, i.e. invariant mass of in plane perpendicular to the beam :  E T miss

K. Piotrzkowski, PHYS m T W distribution is sensitive to m W m T W (GeV) m W = 79.8 GeV m W = 80.3 GeV  fit experimental distributions with SM prediction (Monte Carlo simulation) for different values of m W  find m W which best fits data

K. Piotrzkowski, PHYS Uncertainties on m W Come mainly from capability of Monte Carlo prediction to reproduce real life, that is: detector performance: energy resolution, energy scale, etc. physics: p T W,  W,  W, backgrounds, etc. Dominant error (today at Tevatron, most likely also at LHC): knowledge of lepton energy scale of the detector: if measurement of lepton energy wrong by 1%, then measured m W wrong by 1%

K. Piotrzkowski, PHYS Expected precision on m W at LHC Source of uncertainty  m W Statistical error << 2 MeV Physics uncertainties ~ 15 MeV (p T W,  W,  W, …) Detector performance < 10 MeV (energy resolution, lepton identification, etc,) Energy scale 15 MeV Total ~ 25 MeV (per experiment, per channel) Combining both channels ( e  ) and both experiments (ATLAS, CMS),  m W  15 MeV should be achieved. However: very difficult measurement

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS Measurement of m top Top is most intriguing fermion: -- m top  174 GeV  clues about origin of particle masses ? Discovered in ‘94 at Tevatron  precise measurements of mass, couplings, etc. just started Top mass spectrum from CDF tt  b bjj eventsS+B B -- u c t d s b  m (t-b)  170 GeV  radiative corrections

K. Piotrzkowski, PHYS Top production at LHC: e.g. g g t t t t q q  (pp  + X)  800 pb 10 7 pairs produced in one year at low L ~ 10 2 times more than at Tevatron measure m top,  tt, BR, V tb, single top, rare decays (e.g. t  Zc), resonances, etc. production is the main background to new physics (SUSY, Higgs)

K. Piotrzkowski, PHYS Top decays: t W b BR  100% in SM -- hadronic channel: both W  jj  6 jet final states. BR  50 % but large QCD multijet background. -- leptonic channel: both W   2 jets E T miss final states. BR  10 %. Little kinematic constraints to reconstruct mass. -- semileptonic channel: one W  jj, one W   4 jets E T miss final states. BR  40 %. If = e,  gold-plated channel for mass measurement at hadron colliders. In all cases two jets are b-jets  displaced vertices in the inner detector

K. Piotrzkowski, PHYS Expected precision on m top at LHC Source of uncertainty  m top Statistical error << 100 MeV Physics uncertainties ~ 1.3 GeV (background, FSR, ISR, fragmentation, etc. ) Jet scale (b-jets, light-quark jets) ~ 0.8 GeV Total ~ 1.5 GeV (per experiment, per channel) Uncertainty dominated by the knowledge of physics and not of detector. By combining both experiments and all channels:  m top ~ 1 GeV at LHC From  m top ~ 1 GeV,  m W ~ 15 MeV  indirect measurement  m H /m H ~ 25% (today ~ 50%) If / when Higgs discovered, comparison of measured m H with indirect measurement will be essential consistency checks of EWSB

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS Real event at RHIC (BNL)

K. Piotrzkowski, PHYS Distribution inclusive des particules

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS

K. Piotrzkowski, PHYS Transverse “radii” of the system at freeze-out

K. Piotrzkowski, PHYS HBT; coordinate system

K. Piotrzkowski, PHYS The Phase Structure of QCD baryon density Temperature Neutron stars Early universe nuclei nucleon gas hadron gas colour superconductor quark-gluon plasma TcTc 00 critical point ?

K. Piotrzkowski, PHYS Jet quenching prediction Before high-p t partons hadronize and form jets they interact with the medium  decreases their momentum  fewer high-p t particles  “jet quenching”