Barbora Gulejová 1 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 SOLPS5 modelling of ELMing H-mode on TCV.

Slides:



Advertisements
Similar presentations
Reunion Scientifique 05/04/2006 Centre de Recherches en Physique des Plasmas 1 of 12 Barbora Gulejova Some key results from SOL H-mode characterisation.
Advertisements

Barbora Gulejová 1 of 19 Centre de Recherches en Physique des Plasmas Swiss physical society 26/3/2008 SOLPS5 simulations of ELMing H-mode Barbora Gulejová.
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
17. April 2015 Mitglied der Helmholtz-Gemeinschaft Application of a multiscale transport model for magnetized plasmas in cylindrical configuration Workshop.
ASIPP Characteristics of edge localized modes in the superconducting tokamak EAST M. Jiang Institute of Plasma Physics Chinese Academy of Sciences The.
Thermal Load Specifications from ITER C. Kessel ARIES Project Meeting, May 19, 2010 UCSD.
6th Japan Korea workshop July 2011, NIFS, Toki-city Japan Edge impurity transport study in stochastic layer of LHD and scrape-off layer of HL-2A.
SUGGESTED DIII-D RESEARCH FOCUS ON PEDESTAL/BOUNDARY PHYSICS Bill Stacey Georgia Tech Presented at DIII-D Planning Meeting
ELM Filament Propogation Measurements on MAST A. Kirk a, N. B. Ayed b, B. Dudson c, R. Scannel d (a) UKAEA Culham, (b) University of York, (c) University.
A. Kirk, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 2004 The structure of ELMS and the distribution of transient power loads in MAST Presented.
Exploring Capability to Calculate Heat Loads on Divertors and Walls T.K. Mau UC-San Diego ARIES Pathways Project Meeting September 6-7, 2007 Idaho Falls,
Paper O4.007, R. A. Pitts et al., 34th EPS Conference: 5 July 2007 Neoclassical and transport driven parallel SOL flows on TCV R. A. Pitts, J. Horacek.
Centre de Recherches en Physique des Plasmas TF-E modellers meeting B. Gulejová6/5/ of 10 SOLPS5 simulations of Type I ELMing H-mode at JET Barbora.
Comparison of drift simulation with D,Chi different in div.legs.
R. A. Pitts: FOM-Rijnhuizen, 30/11/2006 A summary of some recent edge physics research on TCV and JET R. A. Pitts Centre de Recherches en Physique des.
Integrated Effects of Disruptions and ELMs on Divertor and Nearby Components Valeryi Sizyuk Ahmed Hassanein School of Nuclear Engineering Center for Materials.
March 26, 2008Janos Marki: ELM-induced divertor heat loads1/11 ELM-induced divertor heat loads on TCV J. Marki, R. A. Pitts and TCV Team 2008 Annual Meeting.
R. A. Pitts et al., O-161 of 12PSI17, Heifei Anhui, China, 22-26/05/2006 Parallel SOL flow in TCV R. A. Pitts, J. Horacek, W. Fundamenski 1, A. Nielsen.
HEAT TRANSPORT andCONFINEMENTin EXTRAP T2R L. Frassinetti, P.R. Brunsell, M. Cecconello, S. Menmuir and J.R. Drake.
Barbora Gulejová 1 of 18 Centre de Recherches en Physique des Plasmas First Thesis Committee 30/1/2007 Particle sources and radiation distributions in.
Barbora Gulejová 1 of 10 PSI 2008 abstract 5/12/2007 SOLPS modelling of Type I ELMing H-mode on JET Barbora Gulejová, Richard Pitts, David Coster, Xavier.
Barbora Gulejová 1 of 2 EPS 2007 material 20/6/2007 Time-dependent modelling of ELMing H-mode at TCV with SOLPS Barbora Gulejová, Richard Pitts, Xavier.
托卡马克的平衡计算 李国强 四室学术报告. Introduction Decompose the physics problem by the orders (time order and space order) Traditional decomposition of plasma.
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
Introduction to Plasma- Surface Interactions G M McCracken Hefei, October 2007.
A.Yu. Pigarov, S.I. Krasheninnikov, J.A. Boedo
10th ITPA meeting on SOL & divertor physics, Avila, Spain, Jan 7-10, 2008 Arne Kallenbach 1/15 Prediction of wall fluxes and implications for ITER limiters.
Divertor/SOL contribution IEA/ITPA meeting Naka Nov. 23, 2003 Status and proposals of IEA-LT/ITPA collaboration Multi-machine Experiments Presented by.
Model prediction of impurity retention in ergodic layer and comparison with edge carbon emission in LHD (Impurity retention in the ergodic layer of LHD)
PIC simulations of the propagation of type-1 ELM-produced energetic particles on the SOL of JET D. Tskhakaya 1, *, A. Loarte 2, S. Kuhn 1, and W. Fundamenski.
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
1 Modeling of EAST Divertor S. Zhu Institute of Plasma Physics, Chinese Academy of Sciences.
O. Sauter Effects of plasma shaping on MHD and electron heat conductivity; impact on alpha electron heating O. Sauter for the TCV team Ecole Polytechnique.
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
Transport of deuterium - tritium neutrals in ITER divertor M. Z. Tokar and V.Kotov Plasma and neutral gas in ITER divertor will be mixed of deuterium and.
1 of 22A.V.Chankin & D.P.Coster, 18 th PSI Conference, Toledo, Spain, 29 May 2008 Comparison of 2D Models for the Plasma Edge with Experimental Measurements.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
N. Fedorczak O-26 PSI 2010 San Diego 1 Nicolas Fedorczak Poloidal mapping of turbulent transport in SOL plasmas. G. Bonhomme,
4. Mg islands, electric fields, plasma rotation
DIII-D SHOT #87009 Observes a Plasma Disruption During Neutral Beam Heating At High Plasma Beta Callen et.al, Phys. Plasmas 6, 2963 (1999) Rapid loss of.
D. Tskhakaya et al. 1 (13) PSI 18, Toledo July 2008 Kinetic simulations of the parallel transport in the JET Scrape-off Layer D. Tskhakaya, R.
Introduction of 9th ITPA Meeting, Divertor & SOL and PEDESTAL Jiansheng Hu
1) Disruption heat loading 2) Progress on time-dependent modeling C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD, 4/4/2011.
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Presentation on prioritisation of DIVSOL proposals for M9 Andrew Kirk.
Edge-SOL Plasma Transport Simulation for the KSTAR
R. A. Pitts et al. 1 (12) IAEA, Chengdu Oct ELM transport in the JET scrape-off layer R. A. Pitts, P. Andrew, G. Arnoux, T.Eich, W. Fundamenski,
DIVERTOR INVESTIGATIONS ON NSTX-U LEADING TO FNSF Mike Kotschenreuther Brent Covele Swadesh Mahajan Prashant Valanju Jonathan Roeltgen Zhong-Ping Chen.
TEC Trilateral Euregio Cluster Institut für PlasmaphysikAssoziation EURATOM-Forschungszentrum Jülich 21st IAEA Fusion Energy Conference, October.
ELM propagation in Low- and High-field-side SOLs on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga 1), N.Oyama 1), S.Takamura.
ERO code development A. Kirschner M. Airila, D. Borodin, S. Droste, C. Niehoff  The ERO code  ERO code management  Modelling of CH 4 puffing in ASDEX.
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
Role of thermal instabilities and anomalous transport in the density limit M.Z.Tokar, F.A.Kelly, Y.Liang, X.Loozen Institut für Plasmaphysik, Forschungszentrum.
18th International Spherical Torus Workshop, Princeton, November 2015 Magnetic Configurations  Three comparative configurations:  Standard Divertor (+QF)
ELM propagation and fluctuations characteristics in H- and L-mode SOL plasmas on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga.
Fast response of the divertor plasma and PWI at ELMs in JT-60U 1. Temporal evolutions of electron temperature, density and carbon flux at ELMs (outer divertor)
Page 1 Alberto Loarte- NSTX Research Forum st - 3 rd December 2009  ELM control by RMP is foreseen in ITER to suppress or reduce size of ELM energy.
Radiation divertor experiments in the HL-2A tokamak L.W. Yan, W.Y. Hong, M.X. Wang, J. Cheng, J. Qian, Y.D. Pan, Y. Zhou, W. Li, K.J. Zhao, Z. Cao, Q.W.
1 Estimating the upper wall loading in ITER Peter Stangeby with help from J Boedo 1, D Rudikov 1, A Leonard 1 and W Fundamenski 2 DIII-D 1 JET 2 10 th.
Plasma Turbulence in the HSX Stellarator Experiment and Probes C. Lechte, W. Guttenfelder, K. Likin, J.N. Talmadge, D.T. Anderson HSX Plasma Laboratory,
Plan V. Rozhansky, E. Kaveeva St.Petersburg State Polytechnical University, , Polytechnicheskaya 29, St.Petersburg, Russia Poloidal and Toroidal.
1 V.A. Soukhanovskii/IAEA-FEC/Oct Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D by V.A. Soukhanovskii 1, with S.L. Allen.
2014/03/06 那珂核融合研究所 第 17 回若手科学者によるプラズマ研究会 SOL-divertor plasma simulations with virtual divertor model Satoshi Togo, Tomonori Takizuka a, Makoto Nakamura.
1 ITC-22, November 2012, Toki, Japan 1 Modelling of impurity transport, erosion and redeposition in fusion devices: applications of the ERO code A. Kirschner.
NIMROD Simulations of a DIII-D Plasma Disruption S. Kruger, D. Schnack (SAIC) April 27, 2004 Sherwood Fusion Theory Meeting, Missoula, MT.
Mechanisms for losses during Edge Localised modes (ELMs)
Features of Divertor Plasmas in W7-AS
Major aims of IPP-NIFS collaboration on divertor physics
Finite difference code for 3D edge modelling
Valeryi Sizyuk Ahmed Hassanein School of Nuclear Engineering
ITER consequences of JET 13C migration experiments Jim Strachan, PPPL Jan. 7, 2008 Modeled JET 13C migration for last 2 years- EPS 07 and NF paper in prep.
Presentation transcript:

Barbora Gulejová 1 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 SOLPS5 modelling of ELMing H-mode on TCV Barbora Gulejová, Richard Pitts, Marco Wischmeier, Roland Behn, Jan Horáček OUTLINE * * * * * * Edge plasma – SOL - terminology Why is understanding of ELM important? SOLPS 5 code package (B2 - EIRENE) Theoretical model of simulation Comparison of experimental data with simulation Strategy for next step: simulation of ELM itself

Barbora Gulejová 2 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 Edge plasma - terminology Core plasma Divertor targets Private flux region Separatrix Scrape-off layer (SOL) –Cool plasma on open field lines –SOL width ~1 cm (  B) –Length usually 10’s m (|| B) Poloidal cross-section Outer ITER will be a divertor tokamak Divertor –Plasma guided along field lines to targets remote from core plasma: low T and high n Inner Last closed flux surface LFS HFS

Barbora Gulejová 3 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 Edge localised mode (ELM) H-mode  Edge MHD instabilities  Periodic bursts of particles and energy into the SOL - leaves edge pedestal region in the form of a helical filamentary structure localised in the outboard midplane region of the poloidal cross-section LFS HFS  divertor targets and main walls erosion  first wall power deposition ELMing H-mode=baseline ITER scenario Energy stored in ELMs: TCV  200 J JET  200kJ ITER  8-14 MJ => unacceptable => W~200J DαDα Small ELMs on TCV – same phenomena ! => Used to study SOL transport

Barbora Gulejová 4 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 Scrape-Off Layer Plasma Simulation Suite of codes to simulate transport in edge plasma of tokamaks B2 B2 - solves 2D multi-species fluid equations on a grid given from magnetic equilibrium EIRENE EIRENE - kinetic transport code for neutrals based on Monte - Carlo algorithm SOLPS 5 SOLPS 5 – coupled EIRENE + B2.5 Main inputs: magnetic equilibrium P sol = P heat – P rad core upstream separatrix density n e Free parameters: cross-field transport coefficients (D ┴,  ┴, v ┴ ) B2 plasma background => recycling fluxes EIRENE Sources and sinks due to neutrals and molecules measured systematically adjusted Mesh 72 grid cells poloidally along separatrix 24 cells radially

Barbora Gulejová 5 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 Elming H-mode at TCV # ELMs - too rapid (frequency ~ 200 Hz) for comparison on an individual ELM basis => Many similar events are coherently averaged inside the interval with reasonably periodic elms Pre-ELM phase = steady state ELM = particles and heat are thrown into SOL ( elevated cross-field transport coefficients) Post-ELM phase t pre ~ 2 ms t elm ~ 100 μs t post ~ 1 ms

Barbora Gulejová 6 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 upstream Edge Thomson scattering n e and T e upstream profiles Diagnostic profiles used to constrain the code laser beam Strategy: Match these experimental profiles with data from SOLPS simulation runs by changing cross-field transport parameters D ┴,Χ ┴, v ┴ downstream Langmuir probes j sat target profiles j sat [A.m -2 ] R-R sep [m] outer target j sat R-R sep [m] inner target RCP – reciprocating probe nene pedestal TeTe R-R sep [m] pedestal R-R sep [m]

Barbora Gulejová 7 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 Theory – steady state simulation Cross-field transport coefficients Cross-field radial transport in the main SOL - complex phenomena Ansatz:( D ┴,  ┴, v ┴ ) - variation radially – transport barrier (TB) poloidally – no TB in div.legs outer div.leg  ┴ ┴ SOL div.legs sep D┴D┴ SOL div.legs sep v┴v┴ SOL div.legs sep main SOL diffusion (D ┴ ) + convection (v ┴ ) heat flux SOL radial heat flux: particle flux SOL radial particle flux: main SOL Inner div.leg x x Pure diffusion: v ┴ =0 everywhere More appropriate: Convection simulations with D ┴ = D ┴ class in progress

Barbora Gulejová 8 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 Comparison of experimental data with simulation Purely diffusive approach 1.step: Only radial variation of D ┴,  ┴ upstream targets Excellent agreement !!! Code overestimates data => Poloidal variation necessary => Remove transport barrier from divertor legs => outer J sat [A.m -2 ] LPs SOLPS R-R sep [m] inner j sat R-R sep LPs SOLPS D ┴,Χ ┴ = constant in div. legs nene D┴D┴ TS RCP SOLPS pedestal wall TeTe Χ┴Χ┴ TS RCP SOLPS R-R sep

Barbora Gulejová 9 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 Removing transport barrier from divertor legs It appears that a description of cross-field transport in divertor as radially constant is more appropriate D =  = const. - same value in both divertor legs ! Outer target – better agreement obtained! LP Inner target R-R sep [mm] LP j sat [A.m -2 ] R-R sep [mm] j sat [A.m -2 ] Transport barrier Transport barrier outer target inner target LP 6 m 2.s -1 in div.legs 1m 2.s -1 in SOL ! NO DRIFTS !

Barbora Gulejová 10 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 Other issues to consider 1.) Inner and outer divertor leg assymetry – inner is much shorter 2.) Private flux region (PFR) rescaling in div.legs – different processes in PFR region and SOL region of divertor legs 3.) Ballooning – (B tot /B loc ) α => poloidal variation Inner div.leg outer div.leg sep PFR SOL * * * Sensitivity study for the steady state simulations => Very small effect LP α =0.5 α =1 outer target R-R sep [mm] No ballooning LP Inner target R-R sep α =0.5 α =1 inner target No ballooning

Barbora Gulejová 11 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 Next step : ELM Instantaneous increase of the cross-field transport parameters! Strong poloidal variation - localized on outboard midplane of TCV Requires time-dependent iteration in code - much bigger problem ! Simulations in progress…

Barbora Gulejová 12 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 * * * * * First attempt to simulate Scrape-Off layer in H-mode on TCV with aim to simulate Type III ELMs Simulations conducted using coupled fluid-Monte Carlo (B2-EIRENE) SOLPS5 code constrained by upstream profiles of ne and Te and at the targets profiles of jsat Using exp. data as a guide to systematic adjustments of perpendicular particle and heat transport coefficients Code experiment agreement ONLY possible if transport coefficients are varied radially AND polloidally Excellent match obtained for inter-ELM phase  good basis for simulation of ELM itself (in progress) Conclusions