The Birth of Stars: Nebulae

Slides:



Advertisements
Similar presentations
Star Formation Why is the sunset red? The stuff between the stars
Advertisements

Notes 30.2 Stellar Evolution
The Birth of Stars Chapter Twenty. Guiding Questions 1.Why do astronomers think that stars evolve? 2.What kind of matter exists in the spaces between.
The Birth of Stars of the stars 18-1 How astronomers have pieced together the story of stellar evolution 18-2 What interstellar nebulae are and what.
The Birth of Stars Chapter Twenty. Interstellar gas and dust pervade the Galaxy Interstellar gas and dust, which make up the interstellar medium, are.
Stellar Evolution up to the Main Sequence. Stellar Evolution Recall that at the start we made a point that all we can "see" of the stars is: Brightness.
Stellar Evolution Describe how a protostar becomes a star.
Warm Up 6/6/08 If star A is farther from Earth than star B, but both stars have the same absolute magnitude, what is true about their apparent magnitude?
Stellar Evolution Chapters 12 and 13. Topics Humble beginnings –cloud –core –pre-main-sequence star Fusion –main sequence star –brown dwarf Life on the.
Star Life Cycle.
A star is born… A star is made up of a large amount of gas, in a relatively small volume. A nebula, on the other hand, is a large amount of gas and dust,
Fill in the chart when you see a yellow star. Take notes on the stars and events as well.
Protostars, nebulas and Brown dwarfs
Star Life Cycle.
Roger A. Freedman • William J. Kaufmann III
The Interstellar Medium (ISM): The Birth of Stars.
Star Stuff Joy Harjo (1951 – ) from Secrets From the Center of the World I can hear the sizzle of newborn stars, and know anything of meaning, of the fierce.
Chapter 19.
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 11 The Interstellar Medium.
This set of slides This set of slides starts the topic of stellar evolution, overview, protostars, main sequence… Units covered: 59, 60, 61.
STAR BIRTH. Guiding Questions Why do astronomers think that stars evolve? What kind of matter exists in the spaces between the stars? Where do new stars.
Stars, Galaxies, and the Universe Section 2 Section 2: Stellar Evolution Preview Key Ideas Classifying Stars Star Formation The Main-Sequence Stage Leaving.
Units to cover Homework 8 Unit 56 problems 6,7 Unit 59 problems 6, 8, 9 Unit 60 problems 6, 8, 11 Unit 61 problems 4, 7 Unit 62, problem 8.
The Birth of Stars -part I Chapter Twenty. Announcements I need from you a LIST on questions every end of the class near the door so I can KNOW what you.
Chapter 19 Star Formation (Birth) Chapter 20 Stellar Evolution (Life) Chapter 21 Stellar Explosions (Death) Few issues in astronomy are more basic than.
Star Formation Processes in Stellar Formation Sequence of Events Role of Mass in Stellar Formation Observational Evidence New Theories.
Star Formation. Introduction Star-Forming Regions The Formation of Stars Like the Sun Stars of Other Masses Observations of Brown Dwarfs Observations.
Copyright © 2010 Pearson Education, Inc. Life Cycle of the Stars.
Stellar Evolution. The Birthplace of Stars The space between the stars is not completely empty. Thin clouds of hydrogen and helium, seeded with the “dust”
A105 Stars and Galaxies  This week’s units: 60, 61, 62, 4  News Quiz Today  Star Clusters homework due Thursday  2nd Exam on Thursday, Nov. 2 Today’s.
Chapter 19 Star Formation
1 Stellar Lifecycles The process by which stars are formed and use up their fuel. What exactly happens to a star as it uses up its fuel is strongly dependent.
Review for Quiz 2. Outline of Part 2 Properties of Stars  Distances, luminosities, spectral types, temperatures, sizes  Binary stars, methods of estimating.
Intro screen.
The Interstellar Medium and Star Formation Material between the stars – gas and dust.
1 II-8 Stellar Evolution (Main Ref.: Lecture notes; Parts of FK Sec. 16-1,2, Ch 18, 19, 20; CD photos shown in class) II-8a. Introduction (Main Ref.: Lecture.
Classifying Stars The Hertzsprung-Russell Diagram (H-R Diagram) – Graph plotting the surface temperatures of stars against their luminosity (total energy.
ASTR 113 – 003 Spring 2006 Lecture 04 Feb. 15, 2006 Review (Ch4-5): the Foundation Galaxy (Ch 25-27) Cosmology (Ch28-39) Introduction To Modern Astronomy.
Star Formation Why is the sunset red? The stuff between the stars
Life Cycle of Stars Birth Place of Stars:
Chapter 30 Section 2 Handout
Stellar Lifecycles The process by which stars are formed and use up their fuel. What exactly happens to a star as it uses up its fuel is strongly dependent.
EARTH & SPACE SCIENCE Chapter 30 Stars, Galaxies, and the Universe 30.2 Stellar Evolution.
Chapter 17 Astro1010-lee.com UVU Survey of Astronomy Chapter 17 Formation of Stars.
Chapter 11 The Interstellar Medium
Chapter 11 The Interstellar Medium
Unit 1 Lesson 3 The Life Cycle of Stars
- HW Ch. 10, EXTENDED Mon. Nov. 8 - HW Ch. 11 & 12, due Mon. Nov HW Ch. 13 & 14 due Mon. Nov. 22 Exam 3 on Tuesday Nov. 23.
The life cycle of stars from birth to death
Classificati on HR diagramStar clustersTermsLife cycle Life Cycles 2 $ 200 $ 200$200 $ 200 $400 $ 400$400 $ 400 $600 $ 600$600 $ 600 $ 600$600 $800.
STARS.
The Star Cycle. Birth Stars begin in a DARK NEBULA (cloud of gas and dust)… aka the STELLAR NURSERY The nebula begins to contract due to gravity in.
Universe Tenth Edition
H205 Cosmic Origins  Today: The Origin of Stars  Begin EP 6  Tuesday Evening: John Mather  7:30 Whittenberger APOD.
BEYOND OUR SOLAR SYSTEM CHAPTER 25 Part II. INTERSTELLAR MATTER NEBULA BRIGHT NEBULAE EMISSION NEBULA REFLECTION NEBULA SUPERNOVA REMANTS DARK NEBULAE.
Star Formation The stuff between the stars Nebulae Giant molecular clouds Collapse of clouds Protostars Reading
Guiding Questions Why do astronomers think that stars evolve? What kind of matter exists in the spaces between the stars? Where do new stars form? What.
Star Formation. Chapter 19 Not on this Exam – On the Next Exam!
Stellar Birth Dr. Bill Pezzaglia Astrophysics: Stellar Evolution 1 Updated: 10/02/2006.
Stars, Galaxies, and the Universe Section 2 Section 2: Stellar Evolution Preview Objectives Classifying Stars Star Formation The Main-Sequence Stage Leaving.
HNRT Astrobiology Chapter 11
Stellar Evolution Chapters 16, 17 & 18.
The Birth of Stars.
Stellar Evolution: Aim: The Life Cycle of a Star
Chapter 11 The Interstellar Medium
Announcements Observing sheets due today (you can hand them in to me).
Review: 1. How is the mass of stars determined?
Nebula By: Mckayla Morrison.
Life Cycles of Stars Where we’re going today…
Stellar Evolution Chapter 30.2.
Presentation transcript:

The Birth of Stars: Nebulae

Guiding Questions Why do astronomers think that stars evolve? What kind of matter exists in the spaces between the stars? In what kind of nebulae do new stars form? What steps are involved in forming a star like the Sun? When a star forms, why does it end up with only a fraction of the available matter? What do star clusters tell us about the formation of stars? Where in the Galaxy does star formation take place? How can the death of one star trigger the birth of many other stars?

Stars Evolve Stars shine by thermonuclear reactions They have a finite life span, because the hydrogen fuel will be exhausted A year to a star is like a second to a human To understand the evolution of stars, the approach is to piece together the information gathered for many stars that are at different evolution stages

Interstellar Medium and Nebulae The space between stars is filled with a thin gas and dust particles Interstellar gas and dust pervade the Galaxy Nebula: a cloud of concentrated interstellar gas and dust; 104 to 109 particles per cubic centimeter

Emission Nebula or H II region Emission nebulae are glowing clouds of gas They are found near hot, luminous stars of spectral types O and B They are powered by ultraviolet light that they absorb from nearby hot stars They are composed of ionized hydrogen atoms; the so called H II region. They emit light through a process called recombination: free electrons get back to form neutron hydrogen; similar to fluorescence They glow red (Hα emission)

Dark Nebula Dark nebulae are so dense that they are opaque They appear as dark blobs against a background of distant stars

Reflection Nebulae: dust scattering Reflection nebulae are produced when starlight is reflected from dust grains in the interstellar medium, producing a characteristic bluish glow Short wavelength blue lights are scattered more efficient that red lights

Interstellar Extinction Remote stars seem to be dimmer than would be expected from their distance alone

Interstellar Reddening Remote stars are also reddened as they pass through the interstellar medium, because the blue component of their star light is scattered and absorbed by interstellar dust

Interstellar Reddening Reddening depends on distance; the more distant, the redder

Distribution of Interstellar Gas and Dust The interstellar gas and dust are confined to the plane of the galaxy

Protostars form in cold, dark nebulae Protostar: the clump formed from dense and cold nebula under gravitational contraction The protostar contracts, because the pressure inside is too low to support all the mass. As a protostar grows by the gravitational accretion of gases, Kelvin-Helmholtz contraction causes it to heat and begin glowing

Protostars form in cold, dark nebulae

Protostars evolve into main-sequence stars A protostar’s relatively low temperature and high luminosity place it in the upper right region on an H-R diagram Further evolution of a protostar causes it to move toward the main sequence on the H-R diagram When its core temperatures become high enough to ignite steady hydrogen burning, it becomes a main sequence star

The more massive the protostar, the more rapidly it evolves Greater mass, contracts and heats more rapidly, and hydrogen fusion begins earlier Greater mass, greater pressure and temperature in the core If protostar less than 0.08 Msun, it can never develop the temperature and pressure to start the hydrogen fusion Such “failed” stars end up as brown dwarfs, which shines faintly by Kelvin-Helmholtz contraction

During the birth process, stars both gain and lose mass In the final stages of pre–main-sequence contraction, when thermonuclear reactions are about to begin in its core, a protostar may eject large amounts of gas into space Low-mass stars that vigorously eject gas are called T Tauri stars (age ~ 1 million year)

Jets: A circumstellar accretion disk provides material that a young star ejects as jets

Jets: Clumps of glowing gas are sometimes found along these jets and at their ends

Young Star Clusters Newborn stars may form a star cluster Stars are held together in such a cluster by gravity Occasionally a star moving more rapidly than average will escape, or “evaporate,” from such a cluster A stellar association is a group of newborn stars that are moving apart so rapidly that their gravitational attraction for one another cannot pull them into orbit about one another

Young Star Cluster and its H-R diagram NGC 2264, ~ 2 million year old Most of its cool, low-mass stars have not yet arrived at the main sequence

Older Star Cluster and its H-R diagram Plleiades, ~ 50 million year old Almost all stars arrived at the main sequence

Trigger of Star Birth: Shock Waves from O and B Stars The most massive protostars to form out of a dark nebula rapidly become main sequence O and B stars They emit strong ultraviolet radiation that ionizes hydrogen in the surrounding cloud, thus creating the reddish emission nebulae called H II regions Ultraviolet radiation and stellar winds from the O and B stars at the core of an H II region create shock waves that move outward through the gas cloud, compressing the gas and triggering the formation of more protostars nearby

Trigger of Star Birth: Shock Waves from O and B Stars

Trigger of Star Birth: Shock Waves from Supernovae Explosion

Quiz 1. What forms in cold, dark nebulae? T Tauri stars are… Describe interstellar reddening. Massive stars evolve more/less rapidly then less massive stars. What type of nebulae are so dense they appear opaque? What type of nebulae produce a bluish glow?