Interest and Equivalence L. K. Gaafar. Interest and Equivalence Example: You borrowed $5,000 from a bank and you have to pay it back in 5 years. There.

Slides:



Advertisements
Similar presentations
Decision-Making Steps
Advertisements

Total interest, initial amount borrowed or lent
Example 1: In the following cash flow diagram, A8=A9=A10=A11=5000, and
William F. Bentz1 Session 11 - Interest Cost. William F. Bentz2 Interest A.Interest is the compensation that must be paid by a borrower for the use of.
APPLICATIONS OF MONEY-TIME RELATIONSHIPS
FA2 Module 5. Interest concepts of future and present value 1.Time value of money 2.Basic interest concepts 3.Present and future values a.Single payment.
Chapter 03: Mortgage Loan Foundations: The Time Value of Money McGraw-Hill/Irwin Copyright © 2011 by the McGraw-Hill Companies, Inc. All rights reserved.
Chapter 4: Time Value of Money
Engineering Economics Outline Overview
1 Dr. Lotfi K.GAAFAR Eng. Ahmed Salah RIFKY ENGR 345 Engineering Economy.
Borrowing, Lending, and Investing
State University of New York WARNING All rights reserved. No part of the course materials used in the instruction of this course may be reproduced in any.
Chapter 3 Interest and Equivalence
Chapter 5: Evaluating a Single Project
Chapter IV Examples.
Chapter 7 - Rate of Return Analysis Click here for Streaming Audio To Accompany Presentation (optional) Click here for Streaming Audio To Accompany Presentation.
Investment Analysis Lecture: 9 Course Code: MBF702.
CTC 475 Review Matching period and interest interval Matching period and interest interval Continuous Compounding Continuous Compounding Continuous Flow.
(c) 2002 Contemporary Engineering Economics
EVALUATING PROJECTS WITH THE BENEFIT / COST RATIO METHOD
Applications of Money- Time Relationships MARR by PW Method r r All cash inflows and outflows are discounted to the present point in time at an interest.
Quiz Book Summer 2003 Prepared by: Eng. Ahmed Taha.
FINAL EXAM REVIEW Spring Nominal and Effective Interest Rates Payment Period  Compounding Period Mortgages and Car Loans MARR and WACC Present.
Appendix G Time Value of Money Learning Objectives
Evaluating Projects with Benefit/Cost Ratio Method
Naval Postgraduate School Time Value of Money Discounted Cash Flow Techniques Source: Raymond P. Lutz, “Discounted Cash Flow Techniques,” Handbook of Industrial.
ALI SALMAN1 LECTURE - 11 ASST PROF. ENGR ALI SALMAN ceme.nust.edu.pk DEPARTMENT OF ENGINEERING MANAGEMENT COLLEGE OF E & ME, NUST DEPARTMENT.
EPT 221 Engineering Design Introduction to Engineering Economics.
Intro to Engineering Economy
FINAL EXAM REVIEW Fall Nominal and Effective Interest Rates Payment Period  Compounding Period Mortgages and Car Loans MARR and WACC Present Worth.
Chapter 7 Rate of Return Analysis
Matakuliah: D0762 – Ekonomi Teknik Tahun: 2009 RATE OF RETURN ANALYSIS Course Outline 7.
Chapter 5 Rate of Return Analysis: Single Alternative 5-1.
Example [1] Time Value of Money
CORPORATE FINANCE II ESCP-EAP - European Executive MBA 23 Nov p.m. London Various Guises of Interest Rates and Present Values in Finance I. Ertürk.
Comparing Projects Using Time Value of Money
INTEREST Simple Interest- this is where interest accumulates at a steady rate each period The formula for this is 1 +it Compound Interest is where interest.
Engineering Orientation Engineering Economics. Value and Interest The value of a dollar given to you today is of greater value than that of a dollar given.
1 Slides for BAII+ Calculator Training Videos. 2 Slides for Lesson 1 There are no corresponding slides for Lesson 1, “Introduction to the Calculator”
Chapter 4: The Time Value of Money
Engineering Economic Analysis Canadian Edition
Prepared by: C. Douglas Cloud Professor Emeritus of Accounting Pepperdine University Long-Term Liabilities: Bonds and Notes Chapter 12.
14 Long-Term Liabilities: Bonds and Notes Accounting 26e C H A P T E R
EGR Rate of Return Analysis Rate of Return (ROR) is the rate paid on the unpaid balance of borrowed money, or the rate earned on the unrecovered.
D- 1. D- 2 Appendix D Time Value of Money Learning Objectives After studying this chapter, you should be able to: 1.Distinguish between simple and compound.
1 Chapter 7 Rate of Return Analysis. 2 Recall the $5,000 debt example in chapter 3. Each of the four plans were used to repay the amount of $5000. At.
Evaluating a Single Project
MIE Class #5 Manufacturing & Engineering Economics Concerns and Questions Concerns and Questions Quick Recap of Previous ClassQuick Recap of Previous.
Exam 3 Practice Problems For Engineering Economy By Douglas Rittmann.
Engineering Economic Analysis Canadian Edition Chapter 3: Interest and Equivalence.
ISU CCEE CE 203 EEA Chap 3 Interest and Equivalence.
12/17/2015rd1 Engineering Economic Analysis Chapter 15  Selection of a MARR.
Lecture Outline Basic time value of money (TVM) relationship
Ch 10-1 © 2004 Pearson Education, Inc. Pearson Prentice Hall, Pearson Education, Upper Saddle River, NJ Ostwald and McLaren / Cost Analysis and Estimating.
TM 661 M2 - Probs II. Consider a simple five year investment project with discrete end-of-year cash flows shown below. Revenue at the end of year one.
12/26/2015rd1 Engineering Economic Analysis Chapter 4  More Interest Formulas.
MTH 105. THE TIME VALUE OF MONEY Which would you prefer? - GH 100 today or GH 100 in 5yrs time. 3/8/20162.
Consider a principal P invested at rate r compounded annually for n years: Compound Interest After the first year: so that the total is now 1.
1 Engineering Economics Engineering Economy It deals with the concepts and techniques of analysis useful in evaluating the worth of systems,
PowerPoint to accompany Chapter 6 Bonds. Copyright © 2011 Pearson Australia (a division of Pearson Australia Group Ltd) – / Berk/DeMarzo/Harford.
Chapter 5: Evaluating a Single Project
APPLICATIONS OF MONEY-TIME RELATIONSHIPS
Quiz Book Summer 2003 Prepared by: Eng. Ahmed Taha.
Chapter 5: Evaluating a Single Project
Chapter 5: Evaluating a Single Project
Chapter 5: Evaluating a Single Project
Chapter 5: Evaluating a Single Project
RATE OF RETURN ANALYSIS CHAPTER 7
Chapter 5: Evaluating a Single Project
Chapter 5: Evaluating a Single Project
Presentation transcript:

Interest and Equivalence L. K. Gaafar

Interest and Equivalence Example: You borrowed $5,000 from a bank and you have to pay it back in 5 years. There are many ways the debt can be repaid. (i = 0.08) Plan 1: At end of each year pay $1,000 principal plus interest due. Plan 2: Pay interest due at end of each year and principal at end of five years. Plan 3: Pay in five end-of-year payments ($1,252). Plan 4: Pay principal and interest in one payment at end of five years. All these plans are equivalent in the sense that the sum of all outgoing cash flows at time 0 is $5,000.

Present Value Plan 1: At end of each year pay $1,000 principal plus interest due (a) (b) (c) (d) (e) (f) Yr. Amnt. Owed Int. OwedTotal Owed Princip. Total Payment Begin. of Yr 0.08 * b b + c Payment 1 $5,000 $400 $5,400 $1,000 $1,400 2 $4,000 $320 $4,320 $1,000 $1,320 3 $3,000 $240 $3,240 $1,000 $1,240 4 $2,000 $160 $2,160 $1,000 $1,160 5 $1,000 $80 $1,080 $1,000 $1,080 $1,200 $5,000 $6,200

Present Value Plan 2: Pay interest due at end of each year and principal at end of five years. (a) (b) (c) (d) (e) (f) Yr. Amnt. Owed Int. OwedTotal Owed Princip. Total Payment Begin. of Yr 0.08 * b b + c Payment 1 $5,000 $400 $5,400 $0 $400 2 $5,000 $400 $5,400 $0 $400 3 $5,000 $400 $ 5,400 $0 $400 4 $5,000 $400 $ 5,400 $0 $400 5 $5,000 $400 $ 5,400 $5,000 $5,400 $2,000 $5,000 $7,000

Present Value Plan 3: Pay in five end-of-year payments (a) (b) (c) (d) (e) (f) Yr. Amnt. Owed Int. OwedTotal Owed Princip. Total Payment Begin. of Yr 0.08 * b b + c Payment 1$5,000 $400 $5,400 $852 $1,252 2$4,148 $332 $4,480 $921 $1,252 3$3,227 $258 $3,485 $994 $1,252 4$2,233 $179 $2,412 $1,074 $1,252 5$1,159 $93 $1,252 $1,159 $1,252 $1,261 $5,000 $6,261

Present Value Plan 4: Pay principal and interest in one payment at end of five years. (a) (b) (c) (d) (e) (f) Yr. Amnt. Owed Int. OwedTotal Owed Princip. Total Payment Begin. of Yr 0.08 * b b + c Payment 1 $5,000 $400 $5,400 $0 $0 2 $5,400 $432 $5,832 $0 $0 3 $5,832 $467 $6,299 $0 $0 4 $6,299 $504 $6,802 $0 $0 5 $6,802 $544 $7,347 $5,000 $7,347 $2,347 $5,000 $7,347 Compound Interest: interest is charged on the unpaid interest.

Present Value

Interest and Equivalence Example: You borrowed $8,000 from a bank and you have to pay it back in 4 years. There are many ways the debt can be repaid. (i = 0.10) Plan 1: At end of each year pay $2,000 principal plus interest due. Plan 2: Pay interest due at end of each year and principal at end of four years. Plan 3: Pay in four end-of-year payments ($2,524). Plan 4: Pay principal and interest in one payment at end of four years.

Example With i = 10%, n = 4, find an equivalent uniform payment A for:

Possible Solution This is a problem with decreasing costs instead of increasing costs. Note we can write it as the DIFFERENCE of the following two diagrams, the second of which is in the standard form we need, the first of which is a series of uniform payments. - A = We conclude now that: A = – 6000 (A/G,10%,4) = –6000(1.381) = 15,714.

Possible Solution

Nominal/Effective Rates Suppose that a $1,000 lump-sum amount is invested for 10 years at a nominal interest rate of 6% compounded quarterly. How much is it worth at the end of the tenth year?

Nominal/Effective Rates Suppose that one has a bank loan for $10,000, which is to be repaid at equal end-of-month installments for five years with a nominal interest rate of 12% compounded monthly. What is the amount of each payment?

Nominal/Effective Rates What is the present worth of 8 end-of-quarter payment of $1,000 each, if the nominal interest rate is 15% compounded monthly?

Nominal/Effective Rates Suppose that there exists a series of 10 end-of-year receipts of $1,000 each. What is their equivalent worth as of the end of the tenth year if the nominal interest rate is 12% compounded quarterly? ($18,021)

Comparing Alternatives The table below shows the cash flows associated with 6 mutually exclusive investment opportunities. If the MARR is 10%, identify the feasible alternatives and choose the best one. All alternatives have a useful life of 10 years. The key to solving this problem is to realize that each alternative provides us with an opportunity to invest P for an annual return of A. Acceptable alternatives are those that allow us to realize 10% or more on our investment (P). In other words, we are trying to judge whether it is better to invest P at the rate of i (10%), or invest it for the return of A every period (accept the alternative).

Present Worth (PW) Comparisons Present worth evaluations assess the value of all cash flows at time 0. In the given problem, we are trying to evaluate whether an annual return (A) realizes a specific return (profit, i) on an initial investment (P). The PW of the given cash flows is: PW = -P + A (P/A, i, 10). A P i = MARR = 10% A positive PW [A (P/A, i, 10) > P] indicates that the investment opportunity provides an annual return that is higher than investing the amount P at the MARR (i). In other words, the given return (A) realizes a higher profit than the targeted (i), and accordingly a favorable investment opportunity for P. Another way to look at a positive PW is that the targeted return rate (i) may be realized with a smaller investment (P-PW). A PW of 0 indicates that the investment opportunity realizes exactly the targeted return rate (i), and hence, a borderline investment opportunity. A negative PW [A (P/A, i, 10) < P] indicates that the rate of return is less than the targeted (i), and accordingly an unacceptable investment opportunity. In other words, it is better to invest the amount P at the rate i than to invest it for an annual return of A. For both cases when PW  0, the IRR method may be used to calculate the exact rate of return. PW = ? The best alternative is the one with the highest positive PW

Future Worth (FW) Comparisons Future worth evaluations assess the value of all cash flows at time n. In the given problem, we are trying to evaluate whether an annual return (A) realizes a specific return (profit, i) on an initial investment (P). The FW of the given cash flows is: FW = -P(F/P, i, 10) + A (F/A, i, 10). A P i = MARR = 10% A positive FW [A (F/A, i, 10) > P (F/P, i, 10)] indicates that the future value of the annuity (A) is higher that that of the initial investment (P), and hence, a favorable investment opportunity. In other words, getting A every period is better than investing P at the MARR (i). It also means that the given return (A) realizes a higher profit than the targeted (i). A FW of 0 indicates that the investment opportunity realizes exactly the targeted return rate (i), and hence, a borderline investment opportunity. A negative FW [A (F/A, i, 10) < P (F/P, i, 10)] indicates that the rate of return is less than the targeted (i), and accordingly an unacceptable investment opportunity. In other words, it is better to invest the amount P at the rate i than to invest it for an annual return of A. For both cases when FW  0, the IRR method may be used to calculate the exact rate of return. FW = ? The best alternative is the one with the highest positive FW

Annual Worth (AW) Comparisons Annual worth evaluations assess the annual resultant of all cash flows. In the given problem, we are checking that the offered annuity is at least equal to the annuity we could get by investing P at the MARR (i). Accordingly, the AW of the given cash flows is defined as: AW = -P(A/P, i, 10) + A. A P i = MARR = 10% A positive AW [A > P (A/P, i, 10)] indicates that the offered annuity is greater than what we could get by investing P at the MARR (i), and hence, a favorable investment opportunity. In other words, getting A every period is better than investing P at the MARR (i). It also means that the given return (A) realizes a higher profit than the targeted (i). An AW of 0 indicates that the investment opportunity realizes exactly the targeted return rate (i), and hence, a borderline investment opportunity. A negative AW [A < P (A/P, i, 10)] indicates that the rate of return is less than the targeted (i), and accordingly an unacceptable investment opportunity. In other words, it is better to invest the amount P at the rate i than to invest it for an annual return of A. For both cases when AW  0, the IRR method may be used to calculate the exact rate of return. AW = ? The best alternative is the one with the highest positive AW -P(A/P, i, 10)

Internal Rate of Return (IRR) Comparisons IRR evaluations assess the rate of return at which the net cash flow is equal to zero. It is the rate at which the net worth (Present, Future, or Annual) of all cash flows equals 0. A favorable opportunity exists when IRR  MARR. In our case, IRR is the actual interest at which a one time deposit P results in an annual return of A. Notice that: PW, FW, AW > 0 correspond to IRR > MARR, PW, FW, AW < 0 correspond to IRR < MARR, PW, FW, AW = 0 correspond to IRR = MARR. In other words, a negative PW, FW, or AW does not necessarily mean a loss, but merely a return rate that is smaller than the MARR. Acceptable alternatives are those for which IRR  MRR. Ranking Alternatives can only be based on relative comparisons P i (IRR) = ? A

Comparison Results The table below shows the results of the various calculations. Alternative C may be rejected based on its negative net worth. Notice, however, that this doesn’t mean it is unprofitable. It only means that its profit (internal rate of return) is less than the MARR P A Among all remaining alternatives, E is the best followed by F, D, B, A, respectively. PW, FW, AW results all point to the same ranking. IRR results, however, lead to a different ranking. In the table above, while D has a higher IRR, it is applied to a smaller investment (4,000), while the slightly lower rate of E gives a higher overall return when applied to the higher investment (5,000), and hence, E is better than D. Accordingly, IRR can only be used in relative comparisons (see next slide).

Relative Comparison Results (IRR) In relative comparisons, alternatives are ranked in an ascending order of their initial investments. The IRR of the difference cash flows between the first two alternatives is evaluated. If the resulting IRR is greater than the MARR, the second alternative is better and is used as a base for further comparisons P A The relative IRR results in the table below agree with those of the net worth methods.

Payback (Payout) Period Method Simple Payback (  ):  ’-1 ’’ P Example: A piece of new equipment has been proposed by engineers to increase the productivity of a certain manual welding operation. The investment cost is $25,000, and the equipment will have a salvage value of $5,00 at the end of its life. Increased productivity attributed to equipment will amount to $8,000 per year after taxes. Find the payback period for this investment assuming MARR = 20%. Discounted Payback (  ’): R2R2 R1R1 R’R’ R  -1 E2E2 E1E1 EE E  -1 S Time value of money not considered. Salvage value not considered. Used as a rough estimate and a starting point for discounted.

Payback Period- Example Simple Payback (  ):  ’-1 ’’ P Discounted Payback (  ’): S A piece of new equipment has been proposed by engineers to increase the productivity of a certain manual welding operation. The investment cost is $25,000, and the equipment will have a salvage value of $5,00 at the end of its life. Increased productivity attributed to equipment will amount to $8,000 per year after taxes. Find the payback period for this investment assuming MARR = 20%. Try 4 Try 5 A

Bonds Bonds are money guarantees that pay a fixed amount per period and a final amount at the end of their life (maturity). This final amount is called the redemption value. Bonds are bought for a value called the face value and usually pay a fixed amount every period that is a percentage of the face value. A bond is said to be redeemed at par value when the redemption value is the same as the face value. Bonds pause an interesting problem when they are traded before their maturity as an investment to earn a interest other than the one they provide.

Bonds Find the current price of a 10-year bond paying 6% per year (payable semi-annually) that is redeemed at par value, if bought by a purchaser to yield 10% per year. The face value of the bond is $1,000. [761.16]

Bonds A certain 8-year bond has a face value of $10,000. The bond pays a nominal interest rate of 8% every three months. A prospective buyer would like to earn a nominal interest of 10% per year. How much should this buyer pay for the bond? [$8,907.55]

Bonds A bond with a face vale of $5,000 pays interest of 8% per year. This bond will be redeemed at par value at the end of its 20-year life, an the first interest payment is due one year from now. a.How much should be paid now for this bond in order to yield 10% per year? [$4,148.44] b.If the bond is purchased for $4,600, what annual yield would the buyer receive? [8.9%]

Benefit/Cost Ratio For Evaluating Public Projects Conventional B/C Ratio Modified B/C Ratio

Benefit/Cost Ratio For Evaluating Public Projects A city is considering extending the runways of its Municipal Airport so that commercial jets can use the facility. The land can be purchased for $350,000. Construction costs are projected to be $600,000, and the additional annual maintenance costs for the runway are $22,500. The additional annual maintenance costs of the new terminal are $75,000. The increase in flights will require two new air traffic controllers at the cost of $100,000 per year. Annual benefits of the runway extension are estimated as follows: $325,000 from rental receipts. $65,000 airport tax charged to passengers. $50,000 convenience benefits. $50,000 from tourism. Use B/C ratio to justify the project, assuming a study period of 20 years and an interest rate of 10%. [1.59, 2.62]